1
|
Bhattacharjee R, Hammond E, Chotigar N, Akkaya Z, Jiang F, Bahroos E, Han M, Behr S, Bucknor MD, Souza RB, Pedoia V, Majumdar S. The Relationships between Patellofemoral Bone Remodeling, Cartilage Composition, and Vertical Loading Rate: PET/MRI in Isolated Patellofemoral Osteoarthritis. Osteoarthritis Cartilage 2024:S1063-4584(24)01395-5. [PMID: 39277026 DOI: 10.1016/j.joca.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Loading is invariably an important factor of consideration for understanding the causality flow and parallel existence of articular cartilage and subchondral bone changes. The goal of this study was to investigate the patterns of subregional 18NaF-SUV vs. T1p-T2 associations and vertical ground reaction force loading rates; in isolated patellofemoral-joint-osteoarthritis (PFJ-OA) patients. METHOD Thirty-five isolated PFJ-OA patients, with no tibiofemoral involvement, underwent simultaneous scans in a 3.0T whole-body hybrid PET-MRI scanner. MRI WORMS assessments were performed to identify/confirm isolated PFJ-OA knees from bilateral scans. T1p-T2 relaxation and SUV values were automatically computed for both trochlear and patellar cartilage and subchondral bone subregions (deep, superficial, lateral, and medial). Maximum vertical impact loading rates (Loading-RateNorm) were calculated from walking trials. Relationships were explored between SUV uptake, T1p-T2 values, and Loading-RateNorm via linear mixed-effects modeling. RESULTS Significant and complex association patterns were noted between medial and lateral bone 18NaF-SUV uptakes vs. medial and lateral cartilage sub-regional T1p and T2. SUVMean and SUVMax were positively associated with deep cartilage subregional T1pand T2 values; and negatively associated with superficial cartilage subregional T1p-T2 values in both medial and lateral regions. Both medial and lateral bone 18NaF-SUVMean and SUVMax uptakes remained positively associated with the individual gait characteristics, i.e., peak vertical impact loading rates (Loading-RateNorm). CONCLUSION Evidence of simultaneous, complementary, cross-sectional associations between T1p-T2 values and peak vertical loading rates with 18NaF-SUV, have been rare in the isolated PFJ-OA cohort. The clinical implications of such novel associations remain of utmost importance from a gait retraining perspective.
Collapse
Affiliation(s)
- Rupsa Bhattacharjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Eric Hammond
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
| | - Ngarmsrikam Chotigar
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zehra Akkaya
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA; Ankara University Faculty of Medicine Radiology Department, Ankara, Turkey
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Emma Bahroos
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Misung Han
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Spencer Behr
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew D Bucknor
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Richard B Souza
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA; Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
| | - Valentina Pedoia
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sharmila Majumdar
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Garcia SA, White MS, Gallegos J, Balza I, Kahan S, Palmieri-Smith RM. Associations between Body Mass Index, Gait Mechanics and Trochlear Cartilage Thickness in Those with ACL Reconstruction. Med Sci Sports Exerc 2024; 56:1805-1815. [PMID: 38600643 PMCID: PMC11326996 DOI: 10.1249/mss.0000000000003446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE High body mass index (BMI) is a strong predictor of posttraumatic osteoarthritis (OA) after anterior cruciate ligament reconstruction (ACLR). Altered gait mechanics are independently affected by BMI and ACLR, and influence OA risk. Yet, evidence directly assessing the impact of high BMI on gait or cartilage characteristics after ACLR are limited. Here, we evaluated if high BMI moderates associations between gait and trochlear cartilage structure in individuals with ACLR. METHODS Treadmill walking biomechanics were evaluated in 40 normal BMI and 24 high BMI participants with ACLR at self-selected speeds. Normalized and absolute peak and cumulative loads (i.e., impulse) were extracted for peak knee flexion and adduction moments (KFM, KAM) and vertical ground reaction force (GRF). Medial and lateral femoral cartilage thickness and medial/lateral thickness ratios were assessed via ultrasound. RESULTS Those with ACLR and high BMI walked with reduced normalized peak vertical GRFs, and greater absolute peak and cumulative loads compared with normal BMI individuals with ACLR. Those with ACLR and high BMI also exhibited thinner cartilage and greater medial/lateral ratios in ACLR limbs compared with contralateral limbs whereas normal BMI individuals with ACLR exhibited thicker ACLR limb cartilage. Lastly, greater peak KAM and KAM cumulative load were associated with thicker lateral cartilage and lesser medial/lateral thickness ratios, but only in the high BMI group. CONCLUSIONS We observed those with high BMI after ACLR exhibited trochlear cartilage structural alterations not observed in normal BMI patients, whereas differential associations between loading outcomes and cartilage thickness in ACLR knees were observed between groups. Those with high BMI after ACLR may require different therapeutic strategies to optimize joint health in this subset of patients.
Collapse
Affiliation(s)
- Steven A. Garcia
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
- Biomechanics and Clinical Outcomes Laboratory, University of Illinois at Chicago, Chicago IL
| | - McKenzie S. White
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY
| | - Jovanna Gallegos
- School of Kinesiology, University of Michigan, Ann Arbor MI
- Orthopaedic Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor MI
| | - Isabella Balza
- School of Kinesiology, University of Michigan, Ann Arbor MI
- Orthopaedic Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor MI
| | - Seth Kahan
- School of Kinesiology, University of Michigan, Ann Arbor MI
- Orthopaedic Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor MI
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor MI
- Orthopaedic Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor MI
| |
Collapse
|
3
|
Voronkova E, Melnikov I, Manzhurtsev A, Bozhko O, Vorobyev D, Akhadov T, Menshchikov P. T 2 Mapping of Patellar Cartilage After a Single First-Time Episode of Traumatic Lateral Patellar Dislocation. J Magn Reson Imaging 2024; 59:865-876. [PMID: 37316971 DOI: 10.1002/jmri.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND In most cases, lateral patellar dislocation (LPD) is accompanied by chondral injury and may initiate gradual degeneration of patellar cartilage, which might be detected with a T2 mapping, a well-established method for cartilage lesions assessment. PURPOSE To examine short-term consequences of single first-time LPD in teenagers by T2 mapping of the patellar-cartilage state. STUDY TYPE Prospective. POPULATION 95 patients (mean age: 15.1 ± 2.3; male/female: 46/49) with first-time, complete, traumatic LPD and 51 healthy controls (mean age: 14.7 ± 2.2, male/female: 29/22). FIELD STRENGTH/SEQUENCE 3.0 T; axial T2 mapping acquired using a 2D turbo spin-echo sequence. ASSESSMENT MRI examination was conducted 2-4 months after first LPD. T2 values were calculated in manually segmented cartilage area via averaging over three middle level slices in six cartilage regions: deep, intermediate, superficial layers, and medial lateral parts. STATISTICAL TESTS ANOVA analysis with Tukey's multiple comparison test, one-vs.-rest logistic regression analysis. The threshold of significance was set at P < 0.05. RESULTS In lateral patellar cartilage, a significant increase in T2 values was found in deep and intermediate layers in both patient groups with mild (deep: 34.7 vs. 31.3 msec, intermediate: 38.7 vs. 34.6 msec, effect size = 0.55) and severe (34.8 vs. 31.3 msec, 39.1 vs. 34.6 msec, 0.55) LPD consequences as compared to controls. In the medial facet, only severe cartilage damage showed significant prolongation of T2 times in the deep layer (34.3 vs. 30.7 msec, 0.55). No significant changes in T2 values were found in the lateral superficial layer (P = 0.99), whereas mild chondromalacia resulted in a significant decrease of T2 in the medial superficial layer (41.0 vs. 43.8 msec, 0.55). DATA CONCLUSION The study revealed substantial difference in T2 changes after LPD between medial and lateral areas of patellar cartilage. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Elena Voronkova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Melnikov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
| | - Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga Bozhko
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
| | - Denis Vorobyev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
| | - Petr Menshchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
- LLC Philips, Moscow, Russian Federation
| |
Collapse
|
4
|
Hori M, Terada M, Suga T, Isaka T. The effect of attending rehabilitation after traumatic knee joint injury on femoral articular cartilage morphology in collegiate rugby players with a history of intracapsular knee joint injury during two-year consecutive rugby seasons. Front Sports Act Living 2024; 5:1309938. [PMID: 38274032 PMCID: PMC10808301 DOI: 10.3389/fspor.2023.1309938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction This present study aimed to compare ultrasonographic measures of femoral articular cartilage during two-year seasons between collegiate rugby players who have attended supervised rehabilitation following intracapsular knee joint injury and those without a history of knee injury. Methods Using a prospective observational study design, 12 male collegiate rugby players with a previous history of intracapsular knee joint injury who have received and completed supervised rehabilitation following their injury and 44 players without knee joint injury participated in this study. Ultrasonographic images were used to verify changes in femoral articular cartilage thickness and cross-sectional area (CSA) with or without a previous history of knee joint injury over two consecutive rugby seasons. Results Significant time main effects were observed for the lateral condylar thickness (p < 0.001), the intercondylar thickness (p = 0.001), the medial condylar thickness (p < 0.001), and CSA (p < 0.001). No significant interactions nor group main effects were identified for all femoral articular cartilage (p < 0.05). Conclusions Collegiate rugby players demonstrated a decrease in femoral articular cartilage thickness and CSA over two-year consecutive rugby seasons. These findings indicate that engaging in collegiate rugby induces alterations in femoral articular cartilage structure. Furthermore, there were no differences in all femoral cartilage outcome measures between rugby players with and without a previous history of traumatic knee joint injury. Therefore, attending supervised rehabilitation at the time of their knee joint injury appeared to reduce the impact of a previous history of intracapsular knee joint injury on the change in femoral articular cartilage thickness and CSA among active rugby players.
Collapse
Affiliation(s)
- Miyuki Hori
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Suga
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
5
|
Alfayyadh A, Williams JR, Neal K, Khandha A, Manal K, Snyder-Mackler L, S Buchanan T. Unbalanced Medial-to-Lateral Knee Muscle Co-Contractions are Associated with Medial Tibiofemoral Underloading during Gait Three Months after Anterior Cruciate Ligament Reconstruction. J Biomech 2024; 163:111925. [PMID: 38184905 PMCID: PMC10922905 DOI: 10.1016/j.jbiomech.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Altered medial/lateral knee muscle co-contraction (measure by co-contraction indices, CCI) occurs during gait early after anterior cruciate ligament reconstruction (ACLR). Changes in peak medial compartment forces (pMCF) are also observed early after ACLR and are linked to the development of knee osteoarthritis. We do not know if imbalanced co-contraction is associated with these alterations in knee load. The purpose of this study was to evaluate the association between pMCF and the CCIs of medial/lateral knee muscle pairs during walking three months after ACLR. Bilateral knee gait mechanics and electromyography (EMG) data were collected from 44 participants 3 months following surgery. CCIs of six muscle pairs and medial-to-lateral (M:L) CCIs ratios were calculated during the weight acceptance interval. Bilateral pMCFs were calculated using a subject-based neuromusculoskeletal model. Based on interlimb pMCF symmetry, participants were divided into three groups: symmetric loaders, underloaders, and overloaders. A 2 × 3 (limb × group) ANOVA was used to compare CCIs between limbs in all groups. A partial Spearman's test was performed to examine the association between CCIs ratios and pMCF. The CCIs of the vastus lateralis-lateral gastrocnemius muscle pair was higher in the involved limb of underloaders (vs. the uninvolved limb and vs. the involved limb of symmetric loaders). The ratio of M:L CCIs was significantly lower (more lateral CCIs) in the involved limb, which was associated with lower pMCF. These results suggest that individuals early after ACLR who walk with higher CCIs of lateral knee musculature (vs. medial), have medial tibiofemoral underloading.
Collapse
Affiliation(s)
- Abdulmajeed Alfayyadh
- Physical Therapy and Rehabilitation Department, Jouf University, Jouf, Saudi Arabia; Biomechanics and Movement Science, University of Delaware, Newark, DE, USA.
| | - Jack R Williams
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kelsey Neal
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Ashutosh Khandha
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kurt Manal
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Lynn Snyder-Mackler
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Thomas S Buchanan
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Yao Y, Zhong J, Zhang L, Khan S, Chen W. CartiMorph: A framework for automated knee articular cartilage morphometrics. Med Image Anal 2024; 91:103035. [PMID: 37992496 DOI: 10.1016/j.media.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
We introduce CartiMorph, a framework for automated knee articular cartilage morphometrics. It takes an image as input and generates quantitative metrics for cartilage subregions, including the percentage of full-thickness cartilage loss (FCL), mean thickness, surface area, and volume. CartiMorph leverages the power of deep learning models for hierarchical image feature representation. Deep learning models were trained and validated for tissue segmentation, template construction, and template-to-image registration. We established methods for surface-normal-based cartilage thickness mapping, FCL estimation, and rule-based cartilage parcellation. Our cartilage thickness map showed less error in thin and peripheral regions. We evaluated the effectiveness of the adopted segmentation model by comparing the quantitative metrics obtained from model segmentation and those from manual segmentation. The root-mean-squared deviation of the FCL measurements was less than 8%, and strong correlations were observed for the mean thickness (Pearson's correlation coefficient ρ∈[0.82,0.97]), surface area (ρ∈[0.82,0.98]) and volume (ρ∈[0.89,0.98]) measurements. We compared our FCL measurements with those from a previous study and found that our measurements deviated less from the ground truths. We observed superior performance of the proposed rule-based cartilage parcellation method compared with the atlas-based approach. CartiMorph has the potential to promote imaging biomarkers discovery for knee osteoarthritis.
Collapse
Affiliation(s)
- Yongcheng Yao
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Junru Zhong
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liping Zhang
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheheryar Khan
- School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weitian Chen
- CU Lab of AI in Radiology (CLAIR), Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Jones BW, Willson JD, DeVita P, Wedge RD. Tibiofemoral Load Magnitude and Distribution During Load Carriage. J Appl Biomech 2023; 39:432-439. [PMID: 37739402 DOI: 10.1123/jab.2022-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Chronic exposure to high tibiofemoral joint (TFJ) contact forces can be detrimental to knee joint health. Load carriage increases TFJ contact forces, but it is unclear whether medial and lateral tibiofemoral compartments respond similarly to incremental load carriage. The purpose of our study was to compare TFJ contact forces when walking with 15% and 30% added body weight. Young healthy adults (n = 24) walked for 5 minutes with no load, 15% load, and 30% load on an instrumented treadmill. Total, medial, and lateral TFJ contact peak forces and impulses were calculated via an inverse dynamics informed musculoskeletal model. Results of 1-way repeated measures analyses of variance (α = .05) demonstrated total, medial, and lateral TFJ first peak contact forces and impulses increased significantly with increasing load. Orthogonal polynomial trends demonstrated that the 30% loading condition led to a curvilinear increase in total and lateral TFJ impulses, whereas medial first peak TFJ contact forces and impulses responded linearly to increasing load. The total and lateral compartment impulse increased disproportionally with load carriage, while the medial did not. The medial and lateral compartments responded differently to increasing load during walking, warranting further investigation because it may relate to risk of osteoarthritis.
Collapse
Affiliation(s)
- Blake W Jones
- Department of Kinesiology, East Carolina University, Greenville, NC,USA
- Department of Physical Therapy, East Carolina University, Greenville, NC,USA
| | - John D Willson
- Department of Physical Therapy, East Carolina University, Greenville, NC,USA
| | - Paul DeVita
- Department of Kinesiology, East Carolina University, Greenville, NC,USA
| | - Ryan D Wedge
- Department of Physical Therapy, East Carolina University, Greenville, NC,USA
| |
Collapse
|
8
|
Garcia SA, Pamukoff DN, Johnson AK, Palmieri-Smith RM. Joint and Limb Loading during Gait in Adults with ACL Reconstruction: Comparison between Single-Step and Cumulative Load Metrics. Med Sci Sports Exerc 2023; 55:1706-1716. [PMID: 37126038 PMCID: PMC10524219 DOI: 10.1249/mss.0000000000003201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
PURPOSE Individuals with anterior cruciate ligament reconstruction (ACLR) generally exhibit limb underloading behaviors during walking, but most research focuses on per-step comparisons. Cumulative loading metrics offer unique insight into joint loading as magnitude, duration, and total steps are considered, but few studies have evaluated if cumulative loads are altered post-ACLR. Here, we evaluated if underloading behaviors are apparent in ACLR limbs when using cumulative load metrics and how load metrics change in response to walking speed modifications. METHODS Treadmill walking biomechanics were evaluated in 21 participants with ACLR at three speeds (self-selected (SS); 120% SS and 80% SS). Cumulative loads per step and per kilometer were calculated using knee flexion and adduction moment (KFM and KAM) and vertical ground reaction force (GRF) impulses. Traditional magnitude metrics for KFM, KAM, and GRF were also calculated. RESULTS The ACLR limb displayed smaller KFM and GRF in early and late stances, but larger KFM and GRF during midstance compared with the contralateral limb ( P < 0.01). Only GRF cumulative loads (per step and per kilometer) were reduced in the ACLR limb ( P < 0.01). In response to speed modifications, load magnitudes generally increased with speed. Conversely, cumulative load metrics (per step and per kilometer) decreased at faster speeds and increased at slow speeds ( P < 0.01). CONCLUSIONS Patients with ACLR underload their knee in the sagittal plane per step, but cumulatively over the course of many steps/distance, this underloading phenomenon was not apparent. Furthermore, cumulative load increased at slower speeds, opposite to what is identified with traditional single-step metrics. Assessing cumulative load metrics may offer additional insight into how load outcomes may be impacted in injured populations or in response to gait modifications.
Collapse
Affiliation(s)
- Steven A. Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, MI
- Orthopedic Rehabilitation & Biomechanics (ORB) Laboratory, University of Michigan, Ann Arbor, MI
| | | | - Alexa K. Johnson
- School of Kinesiology, University of Michigan, Ann Arbor, MI
- Orthopedic Rehabilitation & Biomechanics (ORB) Laboratory, University of Michigan, Ann Arbor, MI
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, MI
- Orthopedic Rehabilitation & Biomechanics (ORB) Laboratory, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
The relationship between subchondral bone cysts and cartilage health in the Tibiotalar joint: A finite element analysis. Clin Biomech (Bristol, Avon) 2022; 99:105745. [PMID: 36063743 DOI: 10.1016/j.clinbiomech.2022.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Subchondral bone cysts are a common presentation in ankle haemarthropathy. The relationship with ankle joint health has however not previously been investigated. The aim of this study was to assess the influence of subchondral bone cysts of differing shapes, volumes and depths on joint health. METHODS Chronologically sequential Magnetic Resonance imaging scans of four hemophilic ankles with subchondral bone cysts present (N = 18) were used to build patient specific finite element models under two cystic conditions to assess their influence on cartilage contact pressures. Variables such as location, volume and depth were considered individually, to investigate whether certain cystic conditions may be more detrimental to cartilage health. FINDINGS Significant quantifiable contact redistribution was seen in the presence of subchondral bone cysts and this redistribution reflected the shape and size of the cysts, however, with the presence of cysts in both bones in 10 of the 18 cases a direct relationship to volume could not be correlated. INTERPRETATION This work demonstrated a redistribution of contact pressures in the presence of subchondral bone cysts. This alteration to loading history could be linked to cartilage degeneration due to the biological response to abnormal loading.
Collapse
|
10
|
The Effect of Arm Dominance on Knee Joint Biomechanics During Basketball Block Shot Single-Leg Landing. J Hum Kinet 2022; 83:13-21. [PMID: 36157960 PMCID: PMC9465755 DOI: 10.2478/hukin-2022-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single arm blocking is a key component of successful basketball defence. The player uses either their dominant or non-dominant arm to block the ball landing on a common leg. Understanding how the bio-physical loads of the landing leg change as a function of the blocking arm will provide insights into potential injury risk of the lower limb. The aim of this study was to investigate the effects of arm dominance on the biomechanical variables of injury risk of the lower limb, specifically the knee joint during the single-leg landing in female basketball players. Kinematic and kinetic data were collected from fourteen female basketball athletes (20.85 ± 1.35 years, 1.69 ± 0.06 m, 60.37 ± 7.75 kg), each performing three trials of a dominant arm and non-dominant block jump landing on the dominant leg. The results showed significantly higher anterior and medial ground reaction force, knee joint flexion and abduction and lateral knee force during the dominant arm landing (p < 0.05). These findings highlight potential injury risk and the need for the player to be more proficient at dominant arm block-shot landing. The player should aim to develop a larger landscape of technique to meet the demands of the game and facilitate a more effective and safer landing strategy.
Collapse
|
11
|
Bolcos PO, Mononen ME, Roach KE, Tanaka MS, Suomalainen JS, Mikkonen S, Nissi MJ, Töyräs J, Link TM, Souza R, Majumdar S, Ma B, Li X, Korhonen RK. Subject-specific biomechanical analysis to estimate locations susceptible to osteoarthritis-Finite element modeling and MRI follow-up of ACL reconstructed patients. J Orthop Res 2022; 40:1744-1755. [PMID: 34820897 PMCID: PMC9127000 DOI: 10.1002/jor.25218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
The aims of this case-control study were to: (1) Identify cartilage locations and volumes at risk of osteoarthritis (OA) using subject-specific finite element (FE) models; (2) Quantify the relationships between the simulated biomechanical parameters and T2 and T1ρ relaxation times of magnetic resonance imaging (MRI). We created subject-specific FE models for seven patients with anterior cruciate ligament (ACL) reconstruction and six controls based on a previous proof-of-concept study. We identified locations and cartilage volumes susceptible to OA, based on maximum principal stresses and absolute maximum shear strains in cartilage exceeding thresholds of 7 MPa and 32%, respectively. The locations and volumes susceptible to OA were compared qualitatively and quantitatively against 2-year longitudinal changes in T2 and T1ρ relaxation times. The degeneration volumes predicted by the FE models, based on excessive maximum principal stresses, were significantly correlated (r = 0.711, p < 0.001) with the degeneration volumes determined from T2 relaxation times. There was also a significant correlation between the predicted stress values and changes in T2 relaxation time (r = 0.649, p < 0.001). Absolute maximum shear strains and changes in T1ρ relaxation time were not significantly correlated. Five out of seven patients with ACL reconstruction showed excessive maximum principal stresses in either one or both tibial cartilage compartments, in agreement with follow-up information from MRI. Expectedly, for controls, the FE models and follow-up information showed no degenerative signs. Our results suggest that the presented modelling methodology could be applied to prospectively identify ACL reconstructed patients at risk of biomechanically driven OA, particularly by the analysis of maximum principal stresses of cartilage.
Collapse
Affiliation(s)
- Paul O. Bolcos
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Corresponding author: Paul Octavian Bolcos, Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland, Tel. +358 45 2290653,
| | - Mika E. Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Koren E. Roach
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | - Matthew S. Tanaka
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | | | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J. Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio Finland
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | - Richard Souza
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | - Benjamin Ma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Unites States of America
| | - Xiaojuan Li
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Unites States of America
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Wikstrom EA, Song K, Tennant JN, Pietrosimone B. Gait Biomechanics and Balance Associate with Talar and Subtalar T1ρ Relaxation Times in Those with Chronic Ankle Instability. Med Sci Sports Exerc 2022; 54:1013-1019. [PMID: 35576137 DOI: 10.1249/mss.0000000000002867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine associations between T1ρ relaxation times of talar and subtalar articular cartilage and commonly altered gait biomechanics and postural control outcomes in those with chronic ankle instability (CAI). METHODS Fifteen individuals with CAI (21.13 ± 1.81 yr) completed a T1ρ magnetic resonance imaging as well as a postural control and an overground gait assessment. Talocrural and subtalar cartilage was segmented manually to calculate T1ρ relaxation times. Greater T1ρ relaxation times were interpreted as decreased proteoglycan content. Pearson product-moment bivariate correlations examined the relationships between T1ρ relaxation times and the gait biomechanics and postural control outcomes. RESULTS Across multiple variables, worse postural control demonstrated moderate to strong associations (range, 0.433-0.642 and -0.713) with greater talar T1ρ relaxation times. At the subtalar joint, greater T1ρ relaxation times were associated with lower peak vertical ground reaction forces, lower average vertical ground reaction force loading rates, and lower peak loading rates (range, -0.438 to -0.622). At the talar dome, greater talar T1ρ relaxation times were associated with increased knee extensor moments (r = 0.457), as well as greater knee flexion (r = 0.482) and knee adduction (r = 0.407) at initial contact. Larger step spatiotemporal gait parameters also associated with greater talar and subtalar T1ρ relaxation times (range, 0.434-0.697). CONCLUSIONS In individuals with CAI, worse postural control and altered kinematic, kinetic, and spatiotemporal outcomes demonstrate moderate to strong associations with greater talar T1ρ and/or subtalar relaxation times (i.e., less proteoglycan content). Associations between modifiable neuromechanical variables and greater T1ρ relaxation times may represent potential therapeutic interventions to mitigate ankle joint degeneration in those with CAI.
Collapse
Affiliation(s)
- Erik A Wikstrom
- MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kyeongtak Song
- Sports Medicine Research Institute, Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY
| | - Joshua N Tennant
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Pietrosimone
- MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
13
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
14
|
Gatti AA, Keir PJ, Noseworthy MD, Maly MR. Investigating acute changes in osteoarthritic cartilage by integrating biomechanics and statistical shape models of bone: data from the osteoarthritis initiative. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:861-873. [PMID: 35286512 PMCID: PMC8919909 DOI: 10.1007/s10334-022-01004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Objective Methods Results Discussion Supplementary Information
Collapse
Affiliation(s)
- Anthony A Gatti
- School of Rehabilitation Sciences, McMaster University, Hamilton, Canada
- NeuralSeg Ltd., Hamilton, Canada
| | - Peter J Keir
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Canada
- School of Electrical and Computer Engineering, McMaster University, Hamilton, Canada
| | - Monica R Maly
- School of Rehabilitation Sciences, McMaster University, Hamilton, Canada.
- Department of Kinesiology, McMaster University, Hamilton, Canada.
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
15
|
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Martin I, Sannino A, Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. J Biomed Mater Res A 2022; 110:1372-1385. [PMID: 35262240 DOI: 10.1002/jbm.a.37379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022]
Abstract
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Institute of Polymers, Composites and Biomaterials - National Research Council, Naples, Italy
| | - Fabiana Gullotta
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,ENEA, Division for Sustainable Materials - Research Centre of Brindisi, Brindisi, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| |
Collapse
|
16
|
Williams JR, Neal K, Alfayyadh A, Lennon K, Capin JJ, Khandha A, Manal K, Potter HG, Snyder-Mackler L, Buchanan TS. Knee cartilage T 2 relaxation times 3 months after ACL reconstruction are associated with knee gait variables linked to knee osteoarthritis. J Orthop Res 2022; 40:252-259. [PMID: 33783867 PMCID: PMC8481340 DOI: 10.1002/jor.25043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis development after ACL reconstruction (ACLR) is not well understood. Investigators have examined associations between knee biomechanical alterations and quantitative MRI (qMRI) variables, reflective of cartilage health, 12-60 months following ACLR; however, none have done so early after surgery. As part of an exploratory study, 45 individuals (age, 23 ± 7 years) underwent motion analysis during walking and qMRI 3 months after ACLR. For each limb, peak knee adduction moment (pKAM) and peak knee flexion moment (pKFM) were determined using inverse dynamics and peak medial compartment force was calculated using a neuromusculoskeletal model. T2 relaxation times in the medial compartment and linear regressions were used to determine the associations between gait variables and deep and superficial cartilage T2 relaxation times in six regions. pKAM was positively associated with deep layer T2 relaxation times within the femoral central and posterior regions when examined in the involved limb and from an interlimb difference perspective (involved limb - uninvolved limb). After adjusting for age, the association between interlimb difference of pKAM and interlimb difference of deep layer T2 relaxation times in the tibial central region became significant (p = .043). Interlimb difference of pKFM was negatively associated with interlimb difference of deep layer T2 relaxation times within the femoral central and posterior regions. These associations suggest that degenerative pathways leading to osteoarthritis may be detectable as early as 3 months after reconstruction. Preventative therapeutic techniques may need to be employed early in the rehabilitation process to prevent cartilage degradation.
Collapse
Affiliation(s)
- Jack R. Williams
- Department of Mechanical Engineering, University of
Delaware, Newark, DE
| | - Kelsey Neal
- Department of Mechanical Engineering, University of
Delaware, Newark, DE
| | | | - Kendra Lennon
- Department of Physical Therapy, University of Delaware,
Newark, DE
| | - Jacob J. Capin
- Biomechanics and Movement Science, University of Delaware,
Newark, DE,Department of Physical Therapy, University of Delaware,
Newark, DE,Physical Therapy Program, Department of Physical Medicine
and Rehabilitation, University of Colorado, Aurora, CO,Eastern Colorado VA Geriatric Research Education and
Clinical Center (GRECC), Aurora, CO
| | - Ashutosh Khandha
- Department of Biomedical Engineering, University of
Delaware, Newark, DE
| | - Kurt Manal
- Kinesiology and Applied Physiology, University of Delaware,
Newark, DE
| | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for Special
Surgery, New York, NY
| | - Lynn Snyder-Mackler
- Biomechanics and Movement Science, University of Delaware,
Newark, DE,Department of Physical Therapy, University of Delaware,
Newark, DE,Department of Biomedical Engineering, University of
Delaware, Newark, DE
| | - Thomas S. Buchanan
- Department of Mechanical Engineering, University of
Delaware, Newark, DE,Biomechanics and Movement Science, University of Delaware,
Newark, DE,Department of Biomedical Engineering, University of
Delaware, Newark, DE
| |
Collapse
|
17
|
Schenk H, Simon D, Waldenmeier L, Evers C, Janka R, Welsch GH, Pachowsky ML. Regions at Risk in the Knee Joint of Young Professional Soccer Players: Longitudinal Evaluation of Early Cartilage Degeneration by Quantitative T2 Mapping in 3 T MRI. Cartilage 2021; 13:595S-603S. [PMID: 32449383 PMCID: PMC8808898 DOI: 10.1177/1947603520924773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The study aims to detect regions at risk for (pre-)osteoarthritis in the tibiofemoral joint of young professional soccer players by evaluating cartilage composition by T2 mapping in a 3 T magnetic resonance imaging setting. METHODS In this longitudinal study, 20 professional adolescent soccer players were included. Tibiofemoral cartilage was assessed by quantitative T2 mapping and T2 values were evaluated by regions of interest analysis. Statistical evaluation, using Wilcoxon signed-rank tests, was performed to compare global T2 values and subregional T2 values between a baseline and a follow-up investigation 4.3 years later. Based on the average of playing time (15 years) we divided the cohort in 2 groups and differences were evaluated. RESULTS When comparing baseline and follow-up, our findings showed statistically significant increases of the global medial tibial and femoral T2 values. The most noticeable results of the subregional T2 analysis were statistically significant increases in the medial posterior zones (deep femoral 36.1 vs. 39.5, P = 0.001; superficial femoral 57.0 vs. 62.4, P = 0.034; deep tibial 28.3 vs. 34.1, P = 0.009; superficial tibial 43.2 vs. 55.3, P = 0.002). CONCLUSION The elevation of T2 values in the medial, especially medial posterior, compartment of the knee joint indicates that these regions are at risk for early cartilage degeneration already at the time of adolescence. The findings can help individualize and optimize training concepts and to be aware of the chronic stress on these vulnerable areas. Prevention programs should be established in young players to avoid further cartilage damage.
Collapse
Affiliation(s)
- Hanna Schenk
- Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Simon
- Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany,Department of Internal Medicine
3–Rheumatology and Immunology, University Hospital of Erlangen, Erlangen,
Germany
| | - Leonie Waldenmeier
- Department of Internal Medicine,
University Hospital of Basel, Basel, Switzerland
| | - Christoph Evers
- Department of Radiooncology, University
Hospital of Halle/Saale, Halle, Germany
| | - Rolf Janka
- Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany,Department of Radiology, University
Hospital of Erlangen, Erlangen, Germany
| | - Goetz H. Welsch
- UKE Athleticum, University Hospital
Hamburg-Eppendorf, Hamburg, Germany
| | - Milena L. Pachowsky
- Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany,Department of Internal Medicine
3–Rheumatology and Immunology, University Hospital of Erlangen, Erlangen,
Germany,Department of Trauma and Orthopedic
Surgery, University Hospital of Erlangen, Erlangen, Germany,Milena L. Pachowsky, Department of Trauma
and Orthopedic Surgery, University Hospital of Erlangen, Maximiliansplatz 1,
Erlangen 91054, Germany.
| |
Collapse
|
18
|
Wu Z, Li J, Chen L, Chen S, Zhuang W. Establishing an in vitro model of MR-T1ρ imaging technology to quantify nucleus pulposus tissue proteoglycans: a preliminary study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1528. [PMID: 34790734 PMCID: PMC8576651 DOI: 10.21037/atm-21-4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 11/11/2022]
Abstract
Background The aim of the present study was to construct an in vitro model of degenerated nucleus pulposus with different combinations of biochemical components, and to find an in vitro model for the early degeneration of nucleus pulposus suitable for the detection of magnetic resonance T1rho (MR-T1ρ) sequence for the early diagnosis of degeneration of lumbar intervertebral disc. Methods The proteoglycan concentration gradient in the first experimental group was 5%, with a concentration range of 7 samples in vitro models from 5% to 35%. The second experimental group had 15 samples with a 1% concentration gradient of proteoglycan (range, 10–24%), with a higher water content compared with the first group. The third experimental group contained 20 samples with a concentration gradient of 1% proteoglycan (range, 10–29%), with 75% water content. All of the in vitro models were scanned using a 3.0T GE MR. To analyze the correlation between the proteoglycan content of the in vitro model and the T1ρ value, we investigated the feasibility and stability of modeling. Results There was no correlation between the in vitro model proteoglycan concentration and T1ρ value in the first experimental group; however, there was a significant negative correlation between the proteoglycan concentration and T1ρ value in the second experimental group (Y=–3.02X+131.8, R2=0.852, P<0.05). In the third experimental group, the proteoglycan concentration was significantly positively correlated with T1ρ value (Y=3.05X+11.99, R2=0.834, P<0.05). The comparison of the T1ρ values in the third experimental group before and 3 months after yielded an intraclass correlation coefficient value of 0.980, indicating that the biochemical components in the third experimental group were still stable after 3 months of storage. The slope of the regression equation between the Pfirrmann grading and T1ρ value in the third experimental group was not statistically different from the volunteer group (F=0.54, P=0.814), suggesting that the lumbar disc nucleus pulposus tissue of in vitro model samples fitted well with the volunteer group. Conclusions In this experiment, we successfully constructed an in vitro model of nucleus pulposus tissue proteoglycan that can be used for the quantitative evaluation of the MR-T1ρ imaging.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianqi Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ludan Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenquan Zhuang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Logerstedt DS, Ebert JR, MacLeod TD, Heiderscheit BC, Gabbett TJ, Eckenrode BJ. Effects of and Response to Mechanical Loading on the Knee. Sports Med 2021; 52:201-235. [PMID: 34669175 DOI: 10.1007/s40279-021-01579-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Mechanical loading to the knee joint results in a differential response based on the local capacity of the tissues (ligament, tendon, meniscus, cartilage, and bone) and how those tissues subsequently adapt to that load at the molecular and cellular level. Participation in cutting, pivoting, and jumping sports predisposes the knee to the risk of injury. In this narrative review, we describe different mechanisms of loading that can result in excessive loads to the knee, leading to ligamentous, musculotendinous, meniscal, and chondral injuries or maladaptations. Following injury (or surgery) to structures around the knee, the primary goal of rehabilitation is to maximize the patient's response to exercise at the current level of function, while minimizing the risk of re-injury to the healing tissue. Clinicians should have a clear understanding of the specific injured tissue(s), and rehabilitation should be driven by knowledge of tissue-healing constraints, knee complex and lower extremity biomechanics, neuromuscular physiology, task-specific activities involving weight-bearing and non-weight-bearing conditions, and training principles. We provide a practical application for prescribing loading progressions of exercises, functional activities, and mobility tasks based on their mechanical load profile to knee-specific structures during the rehabilitation process. Various loading interventions can be used by clinicians to produce physical stress to address body function, physical impairments, activity limitations, and participation restrictions. By modifying the mechanical load elements, clinicians can alter the tissue adaptations, facilitate motor learning, and resolve corresponding physical impairments. Providing different loads that create variable tensile, compressive, and shear deformation on the tissue through mechanotransduction and specificity can promote the appropriate stress adaptations to increase tissue capacity and injury tolerance. Tools for monitoring rehabilitation training loads to the knee are proposed to assess the reactivity of the knee joint to mechanical loading to monitor excessive mechanical loads and facilitate optimal rehabilitation.
Collapse
Affiliation(s)
- David S Logerstedt
- Department of Physical Therapy, University of the Sciences in Philadelphia, Philadelphia, PA, USA.
| | - Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia.,Orthopaedic Research Foundation of Western Australia, Perth, WA, Australia.,Perth Orthopaedic and Sports Medicine Research Institute, Perth, WA, Australia
| | - Toran D MacLeod
- Department of Physical Therapy, Sacramento State University, Sacramento, CA, USA
| | - Bryan C Heiderscheit
- Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, Australia.,Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| | - Brian J Eckenrode
- Department of Physical Therapy, Arcadia University, Glenside, PA, USA
| |
Collapse
|
20
|
Wellsandt E, Emory J, Golightly YM, Dudley AT, Michaud K, Tao MA, Manzer MN, Sajja BR. Individual and cumulative measures of knee joint load associate with T2 relaxation times of knee cartilage in young, uninjured individuals: A pilot study. Knee 2021; 32:19-29. [PMID: 34371371 DOI: 10.1016/j.knee.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/25/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Articular cartilage structure and chondrocyte health are sensitive and reliant on dynamic joint loading during activities. The purpose of this pilot study was to determine the association between measures of individual and cumulative knee joint loading with T2 relaxation times in the knee cartilage of young individuals without knee injury. METHODS Twelve participants (17-30 years old) without history of knee injury or surgery completed MRI, physical activity (PA), and biomechanical gait testing. T2 relaxation times were calculated in the cartilage within the patella and lateral and medial compartments. Accelerometry was used to measure mean daily step counts, minutes of PA, and % sedentary time over 7 days. Vertical ground reaction force, external knee joint moments and peak knee flexion angle were measured during stance phase of gait using three-dimensional motion capture. Cumulative knee joint loading was calculated as daily step count by external knee joint moment impulse. The relationship between measures of knee joint loading and T2 relaxation times was assessed using Pearson correlations. RESULTS Higher T2 relaxation times in the femoral and tibial cartilage were consistently correlated to greater body mass, daily step counts, moderate and vigorous PA, and peak knee joint moments (r = 0.10-0.84). Greater cumulative knee flexion and adduction loading was associated with higher T2 relaxation times in the femoral and tibial cartilage (r = 0.16-0.65). CONCLUSION Preliminary findings suggest that individual loading factors and cumulative knee joint loading are associated with higher T2 relaxation times in the articular cartilage of young, healthy knees.
Collapse
Affiliation(s)
- E Wellsandt
- Division of Physical Therapy Education, University of Nebraska Medical Center, 984420 Nebraska Medical Center, Omaha, NE 98198-4420, United States; Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198-5640, United States.
| | - J Emory
- College of Medicine, University of Nebraska Medical Center, 985520 Nebraska Medical Center, Omaha, NE 68198-5520, United States
| | - Y M Golightly
- Department of Epidemiology, Gillings School of Global Public Health at The University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, United States; Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, 3300 Thurston Bldg., CB#7280, Chapel Hill, NC 27599-7280, United States; Injury Prevention Research Center, University of North Carolina at Chapel Hill, 521 South Greensboro Street, Carboro, NC 27510, United States; Division of Physical Therapy, University of North Carolina at Chapel Hill, Bondurant Hall, CB #7135, Chapel Hill, NC 27599-7135, United States
| | - A T Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, United States
| | - K Michaud
- Department of Internal Medicine, University of Nebraska Medical Center, 983332 Nebraska Medical Center, Omaha, NE 68198-3332, United States; Forward, The National Databank for Rheumatic Diseases, 1035 North Emporia Avenue #288, Wichita, KS 67214, United States
| | - M A Tao
- Division of Physical Therapy Education, University of Nebraska Medical Center, 984420 Nebraska Medical Center, Omaha, NE 98198-4420, United States; Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, 985640 Nebraska Medical Center, Omaha, NE 68198-5640, United States
| | - M N Manzer
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - B R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE 68198-1045, United States
| |
Collapse
|
21
|
Jogi SP, Thaha R, Rajan S, Mahajan V, Venugopal VK, Mehndiratta A, Singh A. Device for Assessing Knee Joint Dynamics During Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 55:895-907. [PMID: 34369633 DOI: 10.1002/jmri.27877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Knee assessment with and without load using magnetic resonance imaging (MRI) can provide information on knee joint dynamics and improve the diagnosis of knee joint diseases. Performing such studies on a routine MRI-scanner require a load-exerting device during scanning. There is a need for more studies on developing loading devices and evaluating their clinical potential. PURPOSE Design and develop a portable and easy-to-use axial loading device to evaluate the knee joint dynamics during the MRI study. STUDY TYPE Prospective study. SUBJECTS Nine healthy subjects. FIELD STRENGTH/SEQUENCE A 0.25 T standing-open MRI and 3.0 T MRI. PD-T2 -weighted FSE, 3D-fast-spoiled-gradient-echo, FS-PD, and CartiGram sequences. ASSESSMENT Design and development of loading device, calibration of loads, MR safety assessment (using projectile angular displacement, torque, and temperature tests). Scoring system for ease of doing. Qualitative (by radiologist) and quantitative (using structural similarity index measure [SSIM]) image-artifact assessment. Evaluation of repeatability, comparison with various standing stances load, and loading effect on knee MR parameters (tibiofemoral bone gap [TFBG], femoral cartilage thickness [FCT], tibial cartilage thickness [TCT], femoral cartilage T2 -value [FCT2], and tibia cartilage T2 -value [TCT2]). The relative percentage change (RPC) in parameters due to the device load was computed. STATISTICAL TEST Pearson's correlation coefficient (r). RESULTS The developed device is conditional-MR safe (details in the manuscript and supplementary materials), 15 × 15 × 45 cm3 dimension, and <3 kg. The ease of using the device was 4.9/5. The device introduced no visible image artifacts, and SSIM of 0.9889 ± 0.0153 was observed. The TFBG intraobserver variability (absolute difference) was <0.1 mm. Interobserver variability of all regions of interest was <0.1 mm. The load exerted by the device was close to the load during standing on both legs in 0.25 T scanner with r > 0.9. Loading resulted in RPC of 1.5%-11.0%, 7.9%-8.5%, and -1.5% to 13.0% in the TFBG, FCT, and TCT, respectively. FCT2 and TCT2 were reduced in range of 1.5-2.7 msec and 0.5-2.3 msec due to load. DATA CONCLUSION The proposed device is conditionally MR safe, low cost (material cost < INR 6000), portable, and effective in loading the knee joint with up to 50% of body weight. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Sandeep P Jogi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, ASET, Amity University Haryana, Gurgaon, Haryana, India
| | - Rafeek Thaha
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | | | | | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Evans-Pickett A, Longobardi L, Spang JT, Creighton RA, Kamath G, Davis-Wilson HC, Loeser R, Blackburn JT, Pietrosimone B. Synovial fluid concentrations of matrix Metalloproteinase-3 and Interluekin-6 following anterior cruciate ligament injury associate with gait biomechanics 6 months following reconstruction. Osteoarthritis Cartilage 2021; 29:1006-1019. [PMID: 33781899 PMCID: PMC8658576 DOI: 10.1016/j.joca.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare gait biomechanics 6 months following anterior cruciate ligament (ACL) reconstruction (ACLR) between patients with the highest and lowest concentrations of synovial fluid (SF) interleukin-6 (IL-6) and matrix metalloproteinase-3 (MMP-3), as well as compared to uninjured controls. DESIGN SF concentrations of IL-6 and MMP-3 were collected 7 ± 4 days post injury in 38 ACL injured patients (55% female, 21±4yrs, 25.3 ± 5.2BMI). ACL injured individuals were stratified into the lowest and highest quartiles based on IL-6 (IL-6Lowest and IL-6Highest) and MMP-3 (MMP-3Lowest and MMP-3Highest) concentrations. Gait biomechanics were collected on the injured limb 6 months post-ACLR and in 38 uninjured controls (50% female, 21±3yrs, 23.8 ± 2.8BMI). Functional analyses of variance were used to compare vertical ground reaction force (vGRF), knee flexion angle (KFA), and internal knee extension moment (KEM) waveforms throughout stance phase of gait to determine the proportions of stance differing between limbs and groups. RESULTS Compared to uninjured controls, IL-6High and MMP-3High ACL subgroups demonstrated lesser vGRF (largest differences: IL-6, 7.88%BW; MMP-3, 11.05%BW) during early-stance and greater vGRF (largest differences: IL-6, 6.21%BW; MMP-3, 5.85%BW) in mid-stance, lesser KFA (largest differences: IL-6, 3.11°; MMP-3, 3.72°) and lesser KEM (largest differences: IL-6, 0.96%BW•m; MMP-3, 1.07%BW•m) in early-stance, as well as greater KFA in mid-stance (largest differences: IL-6, 1.5°; MMP-3, 2.95°). CONCLUSIONS High SF concentrations of a proinflammatory cytokine and a degradative enzyme early post-ACL injury are associated with aberrant gait biomechanics in the injured limb at 6 months post-ACLR (i.e., lesser vGRF, KFA and KEM) linked to posttraumatic osteoarthritis development.
Collapse
Affiliation(s)
- Alyssa Evans-Pickett
- MOTION Science Institute, Department of Exercise and
Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United
States,Human Movement Science Curriculum, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States,Corresponding Author: Alyssa Evans-Pickett, Ph.D.
Student, Department of Exercise and Sport Science, University of North Carolina
at Chapel Hill, 210 South Road Fetzer Hall, Chapel Hill, NC, 27599, United
States,
| | - Lara Longobardi
- Thurston Arthritis Research Center, University of
North Carolina at Chapel Hill, 27599, United States
| | - Jeffrey T. Spang
- Department of Orthopaedics, School of Medicine,
University of North Carolina at Chapel Hill, 27599, NC, United States
| | - R. Alexander Creighton
- Department of Orthopaedics, School of Medicine,
University of North Carolina at Chapel Hill, 27599, NC, United States
| | - Ganesh Kamath
- Department of Orthopaedics, School of Medicine,
University of North Carolina at Chapel Hill, 27599, NC, United States
| | - Hope C. Davis-Wilson
- MOTION Science Institute, Department of Exercise and
Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United
States,Human Movement Science Curriculum, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Richard Loeser
- Thurston Arthritis Research Center, University of
North Carolina at Chapel Hill, 27599, United States
| | - J. Troy Blackburn
- MOTION Science Institute, Department of Exercise and
Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United
States,Human Movement Science Curriculum, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Orthopaedics, School of Medicine,
University of North Carolina at Chapel Hill, 27599, NC, United States
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and
Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United
States,Human Movement Science Curriculum, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Orthopaedics, School of Medicine,
University of North Carolina at Chapel Hill, 27599, NC, United States
| |
Collapse
|
23
|
Delabastita T, Hollville E, Catteau A, Cortvriendt P, De Groote F, Vanwanseele B. Distal-to-proximal joint mechanics redistribution is a main contributor to reduced walking economy in older adults. Scand J Med Sci Sports 2021; 31:1036-1047. [PMID: 33527504 DOI: 10.1111/sms.13929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 01/23/2023]
Abstract
Age-related neural and musculoskeletal declines affect mobility and the quality of life of older adults. To date, the mechanisms underlying reduced walking economy in older adults still remain elusive. In this study, we wanted to investigate which biomechanical factors were associated with the higher energy cost of walking in older compared with young adults. Fourteen younger (24 ± 2 years) and fourteen older (74 ± 4 years) adults were tested. Plantarflexor strength and Achilles tendon stiffness were evaluated during a dynamometer test. Medial gastrocnemius fascicle length, ground reaction forces, joint kinematics, and oxygen consumption were measured during walking treadmill at 0.83 and 1.39 m.s-1 . Energy cost of walking, lower-limb joint mechanics, muscle-tendon unit, and tendinous tissues length were calculated. The energy cost of walking was higher at 0.83 m.s-1 (+16%; P = .005) and plantarflexor strength lower (-31%; P = .007) in older adults. Achilles tendon stiffness and medial gastrocnemius fascicle length changes did not differ between older and young adults. The reduction in ankle mechanics was compensated by increases in hip mechanics in older adults during walking. The hip extensor moment was the only significant predictor of the energy cost of walking (adjusted R2 : 0.35-0.38). The higher energy cost in older adults is mainly associated with their distal-to-proximal redistribution of joint mechanics during walking possibly due to plantarflexor weakness. In our study, medial gastrocnemius fascicle and tendinous tissue behavior did not explain the higher energy cost of walking in older compared to young adults.
Collapse
Affiliation(s)
- Tijs Delabastita
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Enzo Hollville
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Andreas Catteau
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Philip Cortvriendt
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Friedl De Groote
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Benedicte Vanwanseele
- Department of Movement Science, Human Movement Biomechanics Research Group, Leuven, Belgium
| |
Collapse
|
24
|
Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: Combining knee joint computational modelling with follow-up T 1ρ and T 2 imaging. Clin Biomech (Bristol, Avon) 2020; 79:104844. [PMID: 31439361 DOI: 10.1016/j.clinbiomech.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Finite element modelling can be used to evaluate altered loading conditions and failure locations in knee joint tissues. One limitation of this modelling approach has been experimental comparison. The aims of this proof-of-concept study were: 1) identify areas susceptible to osteoarthritis progression in anterior cruciate ligament reconstructed patients using finite element modelling; 2) compare the identified areas against changes in T2 and T1ρ values between 1-year and 3-year follow-up timepoints. METHODS Two patient-specific finite element models of knee joints with anterior cruciate ligament reconstruction were created. The knee geometry was based on clinical magnetic resonance imaging and joint loading was obtained via motion capture. We evaluated biomechanical parameters linked with cartilage degeneration and compared the identified risk areas against T2 and T1ρ maps. FINDINGS The risk areas identified by the finite element models matched the follow-up magnetic resonance imaging findings. For Patient 1, excessive values of maximum principal stresses and shear strains were observed in the posterior side of the lateral tibial and femoral cartilage. For Patient 2, high values of maximum principal stresses and shear strains of cartilage were observed in the posterior side of the medial joint compartment. For both patients, increased T2 and T1ρ values between the follow-up times were observed in the same areas. INTERPRETATION Finite element models with patient-specific geometries and motions and relatively simple material models of tissues were able to identify areas susceptible to post-traumatic knee osteoarthritis. We suggest that the methodology presented here may be applied in large cohort studies.
Collapse
|
25
|
Kessler DA, MacKay JW, McDonald S, McDonnell S, Grainger AJ, Roberts AR, Janiczek RL, Graves MJ, Kaggie JD, Gilbert FJ. Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage. J Magn Reson Imaging 2020; 52:1753-1764. [PMID: 32677070 DOI: 10.1002/jmri.27278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE Prospective observational study. POPULATION Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV <1.1%. Repositioning of the knee had the greatest effect on T1ρ of patellar cartilage with the surface-averaged RMS-CV = 4.8%. While T1ρ showed the greatest response to exercise at the patellofemoral cartilage region, the largest changes in T2 were determined in the lateral femorotibial region. Following thresholding, significant (>SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.
Collapse
Affiliation(s)
| | - James W MacKay
- Department of Radiology, University of Cambridge, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Scott McDonald
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen McDonnell
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Andrew J Grainger
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | | | - Martin J Graves
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, UK.,Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
26
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
27
|
Delabastita T, Afschrift M, Vanwanseele B, De Groote F. Ultrasound-Based Optimal Parameter Estimation Improves Assessment of Calf Muscle-Tendon Interaction During Walking. Ann Biomed Eng 2019; 48:722-733. [PMID: 31691028 DOI: 10.1007/s10439-019-02395-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
We present and evaluate a new approach to estimate calf muscle-tendon parameters and calculate calf muscle-tendon function during walking. We used motion analysis, ultrasound, and EMG data of the calf muscles collected in six young and six older adults during treadmill walking as inputs to a new optimal estimation algorithm. We used estimated parameters or scaled generic parameters in an existing approach to calculate muscle fiber lengths and activations. We calculated the fit with experimental data in terms of root mean squared differences (RMSD) and coefficients of determination (R2). We also calculated the calf muscle metabolic energy cost. RMSD between measured and calculated fiber lengths and activations decreased and R2 increased when estimating parameters compared to using scaled generic parameters. Moreover, R2 between measured and calculated gastrocnemius medialis fiber length and soleus activations increased by 19 and 70%, and calf muscle metabolic energy decreased by 25% when using estimated parameters compared to using scaled generic parameters at speeds not used for estimation. This new approach estimates calf muscle-tendon parameters in good accordance with values reported in literature. The approach improves calculations of calf muscle-tendon interaction during walking and highlights the importance of individualizing calf muscle-tendon parameters.
Collapse
Affiliation(s)
- T Delabastita
- Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - M Afschrift
- Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium
| | - B Vanwanseele
- Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium
| |
Collapse
|
28
|
Edd SN, Babel H, Kerkour N, Jolles BM, Omoumi P, Favre J. Comprehensive description of T2 value spatial variations in non-osteoarthritic femoral cartilage using three-dimensional registration of morphological and relaxometry data. Knee 2019; 26:555-563. [PMID: 31078393 DOI: 10.1016/j.knee.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/31/2019] [Accepted: 03/17/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this study was to develop and assess a method of quantifying cartilage T2 relaxation times in a series of volumes of interest (VOIs) covering the entire cartilage of the femoral condyles. Subsequently, the method was used to test for T2 spatial variations in non-osteoarthritic (OA) knees. METHODS Ten non-OA subjects (five female, average 30 years) were enrolled after informed consent. Three-dimensional bone and cartilage models were created by double echo steady state (DESS) morphological magnetic resonance image (MRI) segmentation, and the models were semi-manually registered with multi-slice, multi-echo (MSME) T2 MRI. Mean T2 values were calculated for 12 VOIs derived from cartilage thickness literature and their respective superficial and deep layers. RESULTS Analyses showed that intra- and inter-rater reliabilities of the presented method were "good" to "excellent" in more than 90% of the VOIs. Additionally, several spatial differences in T2 values were observed, including, for the medial condyle, higher T2 values in the anterior and central VOIs versus in the posterior VOI (p < .05). T2 values were also generally higher in the superficial versus deep layers (p < .05). CONCLUSIONS The presented MRI T2 analysis method is reliable and provides a comprehensive quantification of spatial heterogeneity of healthy cartilage compositional properties. This method can be further applied to better understand knee OA pathophysiology and potentially define clinically relevant diagnostic features of the disease.
Collapse
Affiliation(s)
- Shannon N Edd
- Department of Musculoskeletal Medicine (DAL), Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Hugo Babel
- Department of Musculoskeletal Medicine (DAL), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nadia Kerkour
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Brigitte M Jolles
- Department of Musculoskeletal Medicine (DAL), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Favre
- Department of Musculoskeletal Medicine (DAL), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
29
|
Pastrama MI, Ortiz AC, Zevenbergen L, Famaey N, Gsell W, Neu CP, Himmelreich U, Jonkers I. Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue strains in articular cartilage during cyclic compression. J Mech Behav Biomed Mater 2019; 98:383-394. [PMID: 31349141 DOI: 10.1016/j.jmbbm.2019.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
As degenerative joint diseases such as osteoarthritis (OA) progress, the matrix constituents, particularly collagen fibrils and proteoglycans, become damaged, therefore deteriorating the tissue's mechanical properties. This study aims to further the understanding of the effect of degradation of the different cartilage constituents on the mechanical loading environment in early stage OA. To this end, intact, collagen- and proteoglycan-depleted cartilage plugs were cyclically loaded in axial compression using an experimental model simulating in vivo cartilage-on-cartilage contact conditions in a micro-MRI scanner. Depletion of collagen and proteoglycans was achieved through enzymatic degradation with collagenase and chondroitinase ABC, respectively. Using a displacement-encoded imaging sequence (DENSE), strains were computed and compared in intact and degraded samples. The results revealed that, while degradation with one or the other enzyme had little effect on the contact strains, degradation with a combination of both enzymes caused an increase in the means and variance of the transverse, axial and shear strains, particularly in the superficial zone of the cartilage. This effect indicates that the balance between cartilage matrix constituents plays an essential role in maintaining the mechanical properties of the tissue, and a disturbance in this balance leads to a decrease of the load bearing capacity associated with degenerative joint diseases such as OA.
Collapse
Affiliation(s)
- Maria-Ioana Pastrama
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Ana Caxaido Ortiz
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Lianne Zevenbergen
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Nele Famaey
- KU Leuven, Department of Mechanical Engineering, Soft Tissue Biomechanics Research Group, Leuven, Belgium
| | - Willy Gsell
- University Hospital Leuven, Department of Imaging and Pathology, Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), Leuven, Belgium
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States
| | - Uwe Himmelreich
- University Hospital Leuven, Department of Imaging and Pathology, Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), Leuven, Belgium
| | - Ilse Jonkers
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| |
Collapse
|
30
|
Biomechanical Evidence on Anterior Cruciate Ligament Reconstruction. Rev Bras Ortop 2019; 54:190-197. [PMID: 31363266 PMCID: PMC6529322 DOI: 10.1016/j.rbo.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022] Open
Abstract
Objective
Anterior cruciate ligament (ACL) reconstruction is recommended in athletes with high physical demands. Several techniques are used in reconstruction; however, the most relevant question still is the best biomechanical positioning for the graft. The present study aimed to analyze the biomechanical effect of the position of bone tunnels on load distribution and joint kinetics, as well as the medium-term functional outcomes after ACL reconstruction.
Methods
A biomechanical study using a finite element model of the original knee (without anterior cruciate ligament rupture) and reconstruction of the ACL (neoACL) was performed in four combinations of bone tunnel positions (central femoral-central tibial, anterior femoral-central tibial, posterosuperior femoral-anterior tibial, and central femoral-anterior tibial) using the same type of graft. Each neo-ACL model was compared with the original knee model regarding cartilaginous contact pressure, femoral and meniscal rotation and translation, and ligamentous deformation.
Results
No neo-ACL model was able to fully replicate the original knee model. When the femoral tunnel was posteriorly positioned, cartilage pressures were 25% lower, and the mobility of the meniscus was 12 to 30% higher compared with the original knee model. When the femoral tunnel was in the anterior position, internal rotation was 50% lower than in the original knee model.
Conclusion
Results show that the femoral tunnel farther from the central position appears to be more suitable for a distinct behavior regarding the intact joint. The most anterior position increases rotational instability.
Collapse
|
31
|
Van Rossom S, Wesseling M, Van Assche D, Jonkers I. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking. Cartilage 2019; 10:229-237. [PMID: 29322877 PMCID: PMC6425544 DOI: 10.1177/1947603517752057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. DESIGN MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. RESULTS Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. CONCLUSIONS The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.
Collapse
Affiliation(s)
- Sam Van Rossom
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium,Sam Van Rossom, Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Tervuursevest 101, Box 1501, 3001 Leuven, Belgium.
| | - Mariska Wesseling
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dieter Van Assche
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
32
|
DeFrate LE, Kim-Wang SY, Englander ZA, McNulty AL. Osteoarthritis year in review 2018: mechanics. Osteoarthritis Cartilage 2019; 27:392-400. [PMID: 30597275 PMCID: PMC6489451 DOI: 10.1016/j.joca.2018.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review recent biomechanics literature focused on the interactions between biomechanics and articular cartilage health, particularly focused on macro-scale and human studies. DESIGN A literature search was conducted in PubMed using the search terms (biomechanics AND osteoarthritis) OR (biomechanics AND cartilage) OR (mechanics AND osteoarthritis) OR (mechanics AND cartilage) for publications from April 2017 to April 2018. RESULTS Abstracts from the 559 articles generated from the literature search were reviewed. Due to the wide range of topics, 62 full texts with a focus on in vivo biomechanical studies were included for further discussion. Several overarching themes in the recent literature were identified and are summarized, including 1) new methods to detect early osteoarthritis (OA) development, 2) studies describing healthy and OA cartilage and biomechanics, 3) ACL injury and OA development, 4) meniscus injury and OA development, and 5) OA prevention, treatment, and management. CONCLUSIONS Mechanical loading is a critical factor in the maintenance of joint health. Abnormal mechanical loading can lead to the onset and progression of OA. Thus, recent studies have utilized various biomechanical models to better describe the etiology of OA development and the subsequent effects of OA on the mechanics of joint tissues and whole body biomechanics.
Collapse
Affiliation(s)
- Louis E. DeFrate
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Sophia Y. Kim-Wang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zoë A. Englander
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA,Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
33
|
Taylor KA, Collins AT, Heckelman LN, Kim SY, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE. Activities of daily living influence tibial cartilage T1rho relaxation times. J Biomech 2019; 82:228-233. [PMID: 30455059 PMCID: PMC6492554 DOI: 10.1016/j.jbiomech.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.
Collapse
Affiliation(s)
- Kevin A Taylor
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Amber T Collins
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lauren N Heckelman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Y Kim
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | - Louis E DeFrate
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Bolcos PO, Mononen ME, Mohammadi A, Ebrahimi M, Tanaka MS, Samaan MA, Souza RB, Li X, Suomalainen JS, Jurvelin JS, Töyräs J, Korhonen RK. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci Rep 2018; 8:17351. [PMID: 30478347 PMCID: PMC6255758 DOI: 10.1038/s41598-018-35628-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Use of knee joint finite element models for diagnostic purposes is challenging due to their complexity. Therefore, simpler models are needed for studies where a high number of patients need to be analyzed, without compromising the results of the model. In this study, more complex, kinetic (forces and moments) and simpler, kinetic-kinematic (forces and angles) driven finite element models were compared during the stance phase of gait. Patella and tendons were included in the most complex model, while they were absent in the simplest model. The greatest difference between the most complex and simplest models was observed in the internal-external rotation and axial joint reaction force, while all other rotations, translations and joint reaction forces were similar to one another. In terms of cartilage stresses and strains, the simpler models behaved similarly with the more complex models in the lateral joint compartment, while minor differences were observed in the medial compartment at the beginning of the stance phase. We suggest that it is feasible to use kinetic-kinematic driven knee joint models with a simpler geometry in studies with a large cohort size, particularly when analyzing cartilage responses and failures related to potential overloads.
Collapse
Affiliation(s)
- Paul O Bolcos
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Matthew S Tanaka
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
| | - Michael A Samaan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Dept. of Kinesiology & Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, 94158, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Program of Advanced Musculoskeletal Imaging (PAMI), Department of Biomedical Engineering, Cleveland Clinic, OH, 44195, Cleveland, USA
| | - Juha-Sampo Suomalainen
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD-4072, Brisbane, Australia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| |
Collapse
|
35
|
Brandon SCE, Thelen DG, Smith CR, Novacheck TF, Schwartz MH, Lenhart RL. The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children. Gait Posture 2018; 60:181-187. [PMID: 29248848 PMCID: PMC5809194 DOI: 10.1016/j.gaitpost.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/03/2017] [Accepted: 12/03/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. METHODS We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. RESULTS Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. CONCLUSIONS This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities.
Collapse
Affiliation(s)
- Scott C E Brandon
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; School of Engineering, University of Guelph, Canada
| | - Darryl G Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, USA.
| | - Colin R Smith
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA
| | - Tom F Novacheck
- Gillette Children's Specialty Healthcare, USA; Department of Orthopaedic Surgery, University of Minnesota, Twin Cities, USA
| | - Michael H Schwartz
- Gillette Children's Specialty Healthcare, USA; Department of Orthopaedic Surgery, University of Minnesota, Twin Cities, USA
| | - Rachel L Lenhart
- Department of Mechanical Engineering, University of Wisconsin-Madison, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, USA
| |
Collapse
|
36
|
Nebelung S, Sondern B, Jahr H, Tingart M, Knobe M, Thüring J, Kuhl C, Truhn D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthritis Cartilage 2018; 26:236-244. [PMID: 29175373 DOI: 10.1016/j.joca.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To define the physiological response to sequential loading and unloading in histologically intact human articular cartilage using serial T1ρ mapping, as T1ρ is considered to indicate the tissue's macromolecular content. METHOD 18 macroscopically intact cartilage-bone samples were obtained from the central lateral femoral condyles of 18 patients undergoing total knee replacement. Serial T1ρ mapping was performed on a clinical 3.0-T MRI system using a modified prostate coil. Spin-lock multiple gradient-echo sequences prior to, during and after standardized indentation loading (displacement controlled, strain 20%) were used to obtain seven serial T1ρ maps: unloaded (δ0), quasi-statically loaded (indentation1-indentation3) and under subsequent relaxation (relaxation1-relaxation3). After manual segmentation, zonal and regional regions-of-interest were defined. ROI-specific relative changes were calculated and statistically assessed using paired t-tests. Histological (Mankin classification) and biomechanical (unconfined compression) evaluations served as references. RESULTS All samples were histologically and biomechanically grossly intact (Mankin sum: 1.8 ± 1.2; Young's Modulus: 0.7 ± 0.4 MPa). Upon loading, T1ρ consistently increased throughout the entire sample thickness, primarily subpistonally (indentation1 [M ± SD]: 9.5 ± 7.8% [sub-pistonal area, SPA] vs 4.2 ± 5.8% [peri-pistonal area, PPA]; P < 0.001). T1ρ further increased with ongoing loading (indentation3: 14.1 ± 8.1 [SPA] vs 7.7 ± 5.9% [PPA]; P < 0.001). Even upon unloading (i.e., relaxation), T1ρ persistently increased in time. CONCLUSION Serial T1ρ-mapping reveals distinct and complex zonal and regional changes in articular cartilage as a function of loading and unloading. Thereby, longitudinal adaptive processes in hyaline cartilage become evident, which may be used for the tissue's non-invasive functional characterization by T1ρ.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - B Sondern
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - H Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
37
|
Pizzolato C, Lloyd DG, Barrett RS, Cook JL, Zheng MH, Besier TF, Saxby DJ. Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to the Person for Training and Rehabilitation. Front Comput Neurosci 2017; 11:96. [PMID: 29093676 PMCID: PMC5651250 DOI: 10.3389/fncom.2017.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individual's physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading.
Collapse
Affiliation(s)
- Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jill L. Cook
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Ming H. Zheng
- Centre for Orthopaedic Translational Research, School of Surgery, University of Western Australia, Nedlands, WA, Australia
| | - Thor F. Besier
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David J. Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
38
|
Saxby DJ, Bryant AL, Wang X, Modenese L, Gerus P, Konrath JM, Bennell KL, Fortin K, Wrigley T, Cicuttini FM, Vertullo CJ, Feller JA, Whitehead T, Gallie P, Lloyd DG. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees. Orthop J Sports Med 2017; 5:2325967117722506. [PMID: 28894756 PMCID: PMC5582666 DOI: 10.1177/2325967117722506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. HYPOTHESES Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. RESULTS In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R2 = 0.43, β = 0.62, P = .000; lateral: R2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R2 = 0.41, β = 0.64, P = .001) and thicknesses (R2 = 0.20, β = 0.46, P = .04). CONCLUSION At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
Collapse
Affiliation(s)
| | - David John Saxby
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Adam L Bryant
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xinyang Wang
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Luca Modenese
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pauline Gerus
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jason M Konrath
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Kim L Bennell
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Karine Fortin
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tim Wrigley
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Flavia M Cicuttini
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Christopher J Vertullo
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Julian A Feller
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tim Whitehead
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Price Gallie
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - David G Lloyd
- Investigation performed at School of Allied Health Sciences, Griffith University, Gold Coast, Australia; Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, Australia; and the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|