1
|
Expression of Concern: MiRNAs Predict the Prognosis of Patients with Triple Negative Breast Cancer: A Meta-Analysis. PLoS One 2023; 18:e0286445. [PMID: 37228069 DOI: 10.1371/journal.pone.0286445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
|
2
|
Bahramy A, Zafari N, Rajabi F, Aghakhani A, Jayedi A, Khaboushan AS, Zolbin MM, Yekaninejad MS. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front Mol Biosci 2023; 10:1096524. [PMID: 36726376 PMCID: PMC9885171 DOI: 10.3389/fmolb.2023.1096524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Breast cancer (BC) is the most common cancer in women. The incidence and morbidity of BC are expected to rise rapidly. The stage at which BC is diagnosed has a significant impact on clinical outcomes. When detected early, an overall 5-year survival rate of up to 90% is possible. Although numerous studies have been conducted to assess the prognostic and diagnostic values of non-coding RNAs (ncRNAs) in breast cancer, their overall potential remains unclear. In this field of study, there are various systematic reviews and meta-analysis studies that report volumes of data. In this study, we tried to collect all these systematic reviews and meta-analysis studies in order to re-analyze their data without any restriction to breast cancer or non-coding RNA type, to make it as comprehensive as possible. Methods: Three databases, namely, PubMed, Scopus, and Web of Science (WoS), were searched to find any relevant meta-analysis studies. After thoroughly searching, the screening of titles, abstracts, and full-text and the quality of all included studies were assessed using the AMSTAR tool. All the required data including hazard ratios (HRs), sensitivity (SENS), and specificity (SPEC) were extracted for further analysis, and all analyses were carried out using Stata. Results: In the prognostic part, our initial search of three databases produced 10,548 articles, of which 58 studies were included in the current study. We assessed the correlation of non-coding RNA (ncRNA) expression with different survival outcomes in breast cancer patients: overall survival (OS) (HR = 1.521), disease-free survival (DFS) (HR = 1.33), recurrence-free survival (RFS) (HR = 1.66), progression-free survival (PFS) (HR = 1.71), metastasis-free survival (MFS) (HR = 0.90), and disease-specific survival (DSS) (HR = 0.37). After eliminating low-quality studies, the results did not change significantly. In the diagnostic part, 22 articles and 30 datasets were retrieved from 8,453 articles. The quality of all studies was determined. The bivariate and random-effects models were used to assess the diagnostic value of ncRNAs. The overall area under the curve (AUC) of ncRNAs in differentiated patients is 0.88 (SENS: 80% and SPEC: 82%). There was no difference in the potential of single and combined ncRNAs in differentiated BC patients. However, the overall potential of microRNAs (miRNAs) is higher than that of long non-coding RNAs (lncRNAs). No evidence of publication bias was found in the current study. Nine miRNAs, four lncRNAs, and five gene targets showed significant OS and RFS between normal and cancer patients based on pan-cancer data analysis, demonstrating their potential prognostic value. Conclusion: The present umbrella review showed that ncRNAs, including lncRNAs and miRNAs, can be used as prognostic and diagnostic biomarkers for breast cancer patients, regardless of the sample sources, ethnicity of patients, and subtype of breast cancer.
Collapse
Affiliation(s)
- Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| |
Collapse
|
3
|
Balkrishna A, Mittal R, Arya V. Potential Role of miRNA in Metastatic Cascade of Triple-Negative Breast Cancer. Curr Cancer Drug Targets 2021; 21:153-162. [PMID: 33155912 DOI: 10.2174/1568009620999201103201626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022]
Abstract
Triple-negative breast cancer presents an aggressive form of breast cancer subtype, which further lacks efficient treatment strategies and prognostic markers. Genomic heterogeneity in TNBC has led to the relapse of tumor and cancer stem cells with a higher likelihood of distal metastasis. Several studies supported the notion that miRNAs may act as oncogene or tumor suppressors in TNBC. miRNAs may function as a global regulator of TNBC by targeting post-transcriptional regulation of several genes involved in influencing metastatic events, but the exact mechanism involved in inducing the effect is yet to be elucidated. In this review, we summarized miRNA expression, which can functionally suppress metastatic cascade in TNBC by targeting epithelial to mesenchymal transition, metastatic colonization, cancer stem cells, invasion, migration and metastasis. miRNAs may appear as a metastatic biomarker to predict distal reoccurrence of TNBC in lungs, brain and lymph nodes. miRNA can act as a prognostic marker in metastatic TNBC, thereby predicting overall survival, disease-free survival and distant metastasis-free survival in affected patients. The present review article is an attempt to gain an insight into the repertoire of miRNA that may emerge out as an effective treatment strategy, novel biomarker of distal reoccurrence and prognostic marker in metastatic TNBC.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
4
|
Balkrishna A, Mittal R, Arya V. Unveiling Role of MicroRNAs as Treatment Strategy and Prognostic Markers in Triple Negative Breast Cancer. Curr Pharm Biotechnol 2021; 21:1569-1575. [PMID: 32593278 DOI: 10.2174/1389201021666200627201535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Triple negative breast cancer is the highly aggressive form of breast cancer with high reoccurrence rate and is short of effective treatment strategy. The prognostic markers of it are also not well understood. miRNAs are the global regulators of various cancers on the virtue of its ability to post transcriptional regulation of genes involved in various pathways involved in complicating TNBC. In this review we studied the expression of miRNAs at different stages of TNBC and the role of miRNAs as a tumor suppressor to inhibit cell proliferation, angiogenesis, invasion and metastasis and to induce apoptosis and thereby proposing these miRNAs as an effective treatment strategy against TNBC. miRNA also acts as chemosenstizer in enhancing chemosensitivity of conventional drugs against resistant TNBC cells. The present review emphasizes the importance of miRNAs as prognostic markers to determine the overall survival, disease free survival and distant metastasis free survival rate in TNBC patients. We speculate that miRNA can present themselves as an effective treatment strategy and prognostic marker against TNBC.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
5
|
Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, Gazouli M, Dimopoulos MA. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10:7156-7178. [PMID: 31903173 PMCID: PMC6935258 DOI: 10.18632/oncotarget.27327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play an important role in breast cancer, functioning either as potential oncogenes or tumor suppressor genes, but their role in the prognosis of patients remains unclear. The aim of the present review study is to highlight recent preclinical and clinical studies performed on both circulating and tissue-specific miRNAs and their potential role as prognostic markers in breast cancer. We systematically searched the PubMed database to explore the prognostic value of miRNAs in breast cancer. After performing the literature search and review, 117 eligible studies were identified. We found that 110 aberrantly expressed miRNAs have been associated with prognosis in breast cancer. In conclusion, the collective data presented in this review indicate that miRNAs could serve as novel prognostic tools in breast cancer, while the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Kyriazoglou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
MiR-214-3p regulates the viability, invasion, migration and EMT of TNBC cells by targeting ST6GAL1. Cytotechnology 2019; 71:1155-1165. [PMID: 31705333 DOI: 10.1007/s10616-019-00352-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022] Open
Abstract
MiR-214-3p is concerned with the outcomes of various tumors, such as liver cancer, bladder cancer, etc. However, the role and target of miR-214-3p in triple negative breast cancer (TNBC) is not fully understood. This study took this as the entry point, with a view to find a potential target for TNBC. The expressions of miR-214-3p in TNBC tissues and cell lines were detected, and the effects of miR-214-3p inhibitor on the viability, migration, invasion and epithelial mesenchymal transition (EMT) of TNBC cells were further analyzed. The potential target of miR-214-3p were predicted and verified, as well as the effects of target silencing on the TNBC cells were also measured. MiR-214-3p was abnormally elevated in both TNBC tissues and cell lines, especially in MDA-MB-468 cells. Low-expression of miR-214-3p restrained the survival, migration, invasion and EMT of TNBC cells. ST6GAL1 was the target gene of miR-214-3p, and its expression level increased with the low-expression of miR-214-3p. ST6GAL1 expression was abnormally reduced in both TNBC tissues and cell lines. The silence of ST6GAL1 promoted the viability, migration, invasion and EMT of TNBC cells, which could be reversed by miR-214-3p inhibitor. The down-regulation of miR-214-3p could suppress the viability, migration, invasion and EMT of TNBC cells though targeting ST6GAL1, which might be a potential target for future treatment of TNBC. Up-regulation of miR-214-3p could promote the EMT of non-TNBC cells.
Collapse
|
7
|
Abstract
MOTIVATION Estimating the future course of patients with cancer lesions is invaluable to physicians; however, current clinical methods fail to effectively use the vast amount of multimodal data that is available for cancer patients. To tackle this problem, we constructed a multimodal neural network-based model to predict the survival of patients for 20 different cancer types using clinical data, mRNA expression data, microRNA expression data and histopathology whole slide images (WSIs). We developed an unsupervised encoder to compress these four data modalities into a single feature vector for each patient, handling missing data through a resilient, multimodal dropout method. Encoding methods were tailored to each data type-using deep highway networks to extract features from clinical and genomic data, and convolutional neural networks to extract features from WSIs. RESULTS We used pancancer data to train these feature encodings and predict single cancer and pancancer overall survival, achieving a C-index of 0.78 overall. This work shows that it is possible to build a pancancer model for prognosis that also predicts prognosis in single cancer sites. Furthermore, our model handles multiple data modalities, efficiently analyzes WSIs and represents patient multimodal data flexibly into an unsupervised, informative representation. We thus present a powerful automated tool to accurately determine prognosis, a key step towards personalized treatment for cancer patients. AVAILABILITY AND IMPLEMENTATION https://github.com/gevaertlab/MultimodalPrognosis.
Collapse
Affiliation(s)
| | - Olivier Gevaert
- Department of Medicine and Biomedical Data Science, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
9
|
Fortis SP, Vaxevanis CK, Mahaira LG, Sofopoulos M, Sotiriadou NN, Dinou A, Arnogiannaki N, Stavropoulos-Giokas C, Thanos D, Baxevanis CN, Perez SA. Serum miRNA-based distinct clusters define three groups of breast cancer patients with different clinicopathological and immune characteristics. Cancer Immunol Immunother 2019; 68:57-70. [PMID: 30276443 PMCID: PMC11028120 DOI: 10.1007/s00262-018-2252-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
Breast cancer (BCa) is a heterogeneous disease with different histological, prognostic and clinical aspects. Therefore, the need for identification of novel biomarkers for diagnosis, prognosis and monitoring of disease, as well as treatment outcome prediction remains at the forefront of research. The search for circulating elements, obtainable by simple peripheral blood withdrawal, which may serve as possible biomarkers, constitutes still a challenge. In the present study, we have evaluated the expression of 6 circulating miRNAs, (miR-16, miR-21, miR-23α, miR-146α, miR-155 and miR-181α), in operable BCa patients, with non-metastatic, invasive ductal carcinoma, not receiving neoadjuvant chemotherapy. These miRNAs, known to be involved in both tumor cell progression and immune pathways regulation, were analyzed in relation to circulating cytokines, tumor immune-cell infiltration and established prognostic clinicopathological characteristics. We have identified three different clusters, with overall low (C1), moderate (C2) or high (C3) expression levels of these six circulating miRNAs, which define three distinct groups of non-metastatic BCa patients characterized by different clinicopathological and immune-related characteristics, with possibly different clinical outcomes. Our data provide the proof-of-principle to support the notion that, up- or down-regulation of the same circulating miRNA may reflect different prognosis in BCa. Nonetheless, the prognostic and/or predictive potential of these three "signatures" needs to be further evaluated in larger cohorts of BCa patients with an, at least, 5-year clinical follow-up.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522, Athens, Greece
| | - Christoforos K Vaxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522, Athens, Greece
| | - Louisa G Mahaira
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522, Athens, Greece
| | | | | | - Amalia Dinou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, 11522, Athens, Greece.
| |
Collapse
|
10
|
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144:1401-1411. [PMID: 29923083 PMCID: PMC6061037 DOI: 10.1007/s00432-018-2689-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.
Collapse
Affiliation(s)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland
- Postgraduate School for Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Buschmann D, González R, Kirchner B, Mazzone C, Pfaffl MW, Schelling G, Steinlein O, Reithmair M. Glucocorticoid receptor overexpression slightly shifts microRNA expression patterns in triple-negative breast cancer. Int J Oncol 2018; 52:1765-1776. [PMID: 29620157 PMCID: PMC5919721 DOI: 10.3892/ijo.2018.4336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with limited options for clinical intervention. As with many solid tumors, TNBC is known to promote invasiveness and metastasis by secreting extracellular vesicles (EVs) capable of modulating the behaviour of recipient cells. Recent investigations have demonstrated that high expression levels of glucocorticoid receptor (GR) in TNBC are linked to therapy resistance, higher recurrence rates and increased mortality. In addition to activating protein-coding genes, GR is also involved in the expression of short non-coding RNAs including microRNAs (miRNAs or miRs). The molecular mechanisms responsible for the oncogenic effects of GR on TNBC have yet to be fully elucidated; however, emerging evidence suggests that miRNAs may play a pivotal role in tumorigenesis and metastasis. Thus, the aim of this study was to identify GR-regulated cellular and vesicular miRNAs that might contribute to the particularly oncogenic phenotype of TNBC with a high GR expression. We analyzed miRNA profiles of three TNBC cell lines using an in vitro model of GR overexpression. Next-generation sequencing revealed minor, cell line-specific changes in cellular miRNA expression, whereas vesicular miRNAs were not significantly regulated by GR. Additionally, the analysis of predicted miRNA targets failed to establish a causal link between GR-induced miRNA expression and oncogenic signaling. On the whole, given that GR influences miRNA profiles to only a small degree, other mechanisms are more likely to be responsible for the increased mortality of patients with TNBC with a high GR expression.
Collapse
Affiliation(s)
- Dominik Buschmann
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Ricardo González
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Claudia Mazzone
- Department of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ortrud Steinlein
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
12
|
Khodadadi-Jamayran A, Akgol-Oksuz B, Afanasyeva Y, Heguy A, Thompson M, Ray K, Giro-Perafita A, Sánchez I, Wu X, Tripathy D, Zeleniuch-Jacquotte A, Tsirigos A, Esteva FJ. Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process. Oncotarget 2018; 9:12868-12878. [PMID: 29560116 PMCID: PMC5849180 DOI: 10.18632/oncotarget.24403] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs have been shown to play important roles in breast cancer progression and can serve as biomarkers. To assess the prognostic role of a panel of miRNAs in breast cancer, we collected plasma prospectively at the time of initial diagnosis from 1,780 patients with stage I-III breast cancer prior to definitive treatment. We identified plasma from 115 patients who subsequently developed distant metastases and 115 patients without metastatic disease. Both groups were matched by: age at blood collection, year of blood collection, breast cancer subtype, and stage. The median follow up was 3.4 years (range, 1-9 years). We extracted RNA from plasma and analyzed the expression of 800 miRNAs using Nanostring technology. We then assessed the expression of miRNAs in primary and metastatic breast cancer samples from The Cancer Genome Atlas (TCGA). We found that, miR-24-3p was upregulated in patients with metastases, both in plasma and in breast cancer tissues. Patients whose primary tumors expressed high levels of miR-24-3p had a significantly lower survival rate compared to patients with low mir-24-3p levels in the TCGA cohort (n=1,024). RNA-Seq data of the samples with the highest miR-24-3p expression versus those with the lowest miR-24-3p in the TCGA cohort identified a specific gene expression signature for those tumors with high miR-24-3p. Possible target genes for miR-24-3p were predicted based on gene expression and binding site, and their effects on cancer pathways were evaluated. Cancer, breast cancer and proteoglycans were the top three pathways affected by miR-24-3p overexpression.
Collapse
Affiliation(s)
| | - Betul Akgol-Oksuz
- Department Bioinformatics and Computational Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Adriana Heguy
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Genome Technology Center, NYU School of Medicine, New York, NY, USA
| | - Marae Thompson
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Karina Ray
- Genome Technology Center, NYU School of Medicine, New York, NY, USA
| | - Ariadna Giro-Perafita
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Irma Sánchez
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Xifeng Wu
- Department of Epidemiology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA.,Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Francisco J Esteva
- Division of Hematology/Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Guo Y, Yu H, Wang J, Sheng Q, Zhao S, Zhao YY, Lehmann BD. The Landscape of Small Non-Coding RNAs in Triple-Negative Breast Cancer. Genes (Basel) 2018; 9:genes9010029. [PMID: 29320459 PMCID: PMC5793181 DOI: 10.3390/genes9010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an operational term for breast cancers lacking targetable estrogen receptor expression and HER2 amplifications. TNBC is, therefore, inherently heterogeneous, and is associated with worse prognosis, greater rates of metastasis, and earlier onset. TNBC displays mutational and transcriptional diversity, and distinct mRNA transcriptional subtypes exhibiting unique biology. High-throughput sequencing has extended cancer research far beyond protein coding regions that include non-coding small RNAs, such as miRNA, isomiR, tRNA, snoRNAs, snRNA, yRNA, 7SL, and 7SK. In this study, we performed small RNA profiling of 26 TNBC cell lines, and compared the abundance of non-coding RNAs among the transcriptional subtypes of triple negative breast cancer. We also examined their co-expression pattern with corresponding mRNAs. This study provides a detailed description of small RNA expression in triple-negative breast cancer cell lines that can aid in the development of future biomarker and novel targeted therapies.
Collapse
Affiliation(s)
- Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Hui Yu
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Brian D Lehmann
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Wang C, Zhang ZZ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, Chen WK, Yan YG, Wang WJ. MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed Pharmacother 2017; 93:470-479. [PMID: 28667916 DOI: 10.1016/j.biopha.2017.06.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the most common cause of low back pain. Dysregulation of microRNAs (miRNAs) is involved in the development of IDD. The aim of this study was to explore the influence of miR-210 on type II collagen (Col II) and aggrecan expression and possible mechanisms in human degenerated nucleus pulposus (NP) cells. Our results showed that miR-210 levels were significantly increased in degenerated NP tissues compared with healthy controls, and positively correlated with disc degeneration grade. By gain-of-function and loss-of-function studies in human degenerated NP cells, miR-210 was shown to inhibit autophagy and then upregulate MMP-3 and MMP-13 expression, leading to increased degradation of Col II and aggrecan. Autophagy-related gene 7 (ATG7) was identified as a direct target of miR-210. Knockdown of ATG7 by small interfering RNA (siRNA) abrogated the effects of miR-210 inhibitor on MMP-3, MMP-13, Col II and aggrecan expression. Taken together, these results suggest that miR-210 inhibits autophagy via silencing of ATG7, leading to increased Col II and aggrecan degradation in human degenerated NP cells.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Zi-Zhen Zhang
- School of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Bo Xue
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand Microsurgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Kang Chen
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Yu N, Zhang Q, Liu Q, Yang J, Zhang S. A meta-analysis: microRNAs' prognostic function in patients with nonsmall cell lung cancer. Cancer Med 2017; 6:2098-2105. [PMID: 28809453 PMCID: PMC5603832 DOI: 10.1002/cam4.1158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Accumulating papers have demonstrated that microRNAs play an important role in the progression of lung cancer, mainly as oncogenic and tumor suppressive. Therefore, microRNAs may influence the survival of lung cancer patients. In this meta‐analysis, we evaluated the role of microRNAs in affecting the overall survival in nonsmall cell lung cancer (NSCLC) patients, which may provide valuable information for the treatment of nonsmall cell lung cancer. We used keywords to retrieve literatures from online databases PUBMED,EMBASE and Web of Science and included 12 studies into our investigation according to pre‐set criteria. Then, we analyzed the data with stata13.1 to evaluate the microRNAs role on the prognosis of NSCLC patients. NSCLC patients with higher microRNAs expression levels tend to show lower overall survival. HR (hazard ratio): 2.49, 95% CI (confidence interval): 1.84–3.37. Besides, both oncogenic and tumor suppressive microRNAs have an evident influence on prognosis with HR values of 2.60 (95% CI: 2.12–3.19) and 0.41 (95% CI: 0.05–0.34), respectively. microRNAs, especially from tissue, have an influence on overall survival of NSCLC patients, which indicates that microRNAs could serve as potential prognostic markers for NSCLC and may provide a treatment strategy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Na Yu
- Department of Epidemiology and Medical Statistics, Wuhan University, Hubei, China
| | - Qingjun Zhang
- The Center for Disease Control and Prevention of Hubei Province, Hubei, China
| | - Qing Liu
- Department of Epidemiology and Medical Statistics, Wuhan University, Hubei, China
| | - Jiayu Yang
- Zhongnan Hospital of Wuhan University, Hubei, China
| | - Sheng Zhang
- Department of Epidemiology and Medical Statistics, Nantong University, Jiangsu, China
| |
Collapse
|