1
|
Ballatore M, Carlucci A, Delfino JM, Curto LM. Assessing the impact of conformational perturbants on folding and aggregation pathways of a β-barrel fold. Biochem Biophys Res Commun 2024; 745:151213. [PMID: 39721310 DOI: 10.1016/j.bbrc.2024.151213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Here we explore the interplay between physical and chemical perturbants to unravel links among native folding, amorphous and ordered aggregation scenarios in IFABP (rat intestinal fatty acid binding protein). This small beta-barrel protein undergoes amyloid-like aggregation above 15 % v/v trifluoroethanol. Our aim was to address the influence of sub-aggregating TFE concentrations on the unfolding transitions of IFABP. The urea-induced unfolding process can bona fide be considered a two-state transition where no aggregation takes place. On the other hand, with GdmCl, the appearance of amyloid-like aggregation becomes evident upon TFE challenge. Temperature-induced denaturation profiles show that both additives, TFE and GdmCl decrease protein stability. Whereas amorphous aggregation occurs upon heating in the presence of TFE, no aggregation takes place with GdmCl. Conversely, when both additives are present, amyloid-like aggregation prevails. The explanation for the choice of amorphous or amyloid-like pathways must reconcile the effects of perturbants on both the protein and solvent structures. Key points include the TFE-promoted desolvation of the polypeptide, a process further enhanced by heat. Although GdmCl might prevent amorphous thermal aggregation by solubilizing non-native states, this effect could also favor amyloid aggregation. In addition, the electrolyte-induced segregation of TFE at high enough GdmCl concentration might contribute to the development and/or stabilization of TFE clusters that could act as nucleation-inducing interfaces, thus leading to the observed amyloid aggregation outcome.
Collapse
Affiliation(s)
- Martín Ballatore
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina
| | - Adriana Carlucci
- Department of Pharmaceutical Technology, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Pharmaceutical Technology and Biopharmacy (InTecFYB, UBA), Junín 956, 1113, Buenos Aires, Argentina
| | - José María Delfino
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina.
| | - Lucrecia María Curto
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina.
| |
Collapse
|
2
|
De Belder D, Ghiglione B, Pasteran F, de Mendieta JM, Corso A, Curto L, Di Bella A, Gutkind G, Gomez SA, Power P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect Dis 2020; 6:3026-3033. [PMID: 32970406 DOI: 10.1021/acsinfecdis.0c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel variants of OXA-48-type enzymes with the ability to hydrolyze oxyimino-cephalosporins and carbapenems are increasingly reported. Since its first report in 2011, OXA-163 is now extensively spread throughout Argentina, and several variants like OXA-247 have emerged. Here, we characterized a new blaOXA-48-like variant, OXA-438, and we performed a comparative kinetic analysis with the local variants OXA-247 and OXA-163 and the internationally disseminated OXA-48. blaOXA-163, blaOXA-247, and blaOXA-438 were located in a 70 kb IncN2 conjugative plasmid. OXA-438 presented mutations in the vicinity of conserved KTG (214-216), with a 2-aa deletion (R220-I221) and a D224E shift (as in OXA-163) compared to OXA-48. Despite Kpn163 (OXA-163), Kpn247 (OXA-247) and Eco438 (OXA-438) were resistant to meropenem and ertapenem, and the transconjugants (TC) remained susceptible (however, the carbapenems minimum inhibitory concentrations were ≥3 times 2-fold dilutions higher than the acceptor strain). TC163 and Eco48 were resistant to oxyimino-cephalosporins, unlike TC247 and TC438. kcat/Km values for cefotaxime in OXA-163 were slightly higher than the rest of the variants that were accompanied by a lower Km for carbapenems. For OXA-163, OXA-247, and OXA-438, the addition of NaHCO3 improved kcat values for both cefotaxime and ceftazidime; carbapenems kcat/Km values were higher than for oxyimino-cephalosporins. Mutations occurring near the conserved KTG in OXA-247 and OXA-438 are probably responsible for the improved carbapenems hydrolysis and decreased inactivation of oxyimino-cephalosporins compared to OXA-163. Dichroism results suggest that deletions at the β5-β6 loop seem to impact the structural stability of OXA-48 variants. Finally, additional mechanisms are probably involved in the resistance pattern observed in the clinical isolates.
Collapse
Affiliation(s)
- Denise De Belder
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Barbara Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Lucrecia Curto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- IQUIFIB, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Adriana Di Bella
- Hospital Nacional “Profesor Alejandro Posadas”, El Palomar, Buenos Aires 1684, Argentina
| | - Gabriel Gutkind
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Sonia A. Gomez
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Pablo Power
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
3
|
Niu B, Mackness BC, Zitzewitz JA, Matthews CR, Gross ML. Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry 2020; 59:3650-3659. [PMID: 32924445 DOI: 10.1021/acs.biochem.0c00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands β5, β6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian C Mackness
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Defining Substrate Specificity in the CTX-M Family: the Role of Asp240 in Ceftazidime Hydrolysis. Antimicrob Agents Chemother 2018; 62:AAC.00116-18. [PMID: 29632016 DOI: 10.1128/aac.00116-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The natural diversification of CTX-M β-lactamases led to the emergence of Asp240Gly variants in the clinic that confer reduced susceptibility to ceftazidime (CAZ). In this study, we compared the impact of this substitution on CAZ and ceftazidime-avibactam (CZA) MICs against isogenic Escherichia coli strains with different porin deficiencies. Our results show a noticeable increase in CAZ resistance in clones expressing Asp240Gly-harboring CTX-M when combined with OmpF porin deficiency. Kinetic analysis revealed that the kcat/Km for CAZ was 5- to 15-fold higher for all Asp240Gly variants but remained 200- to 725-fold lower than that for cefotaxime (CTX). In vitro selection of CAZ-resistant clones yielded nonsusceptible CTX-M producers (MIC of >16 μg/ml) only after overnight incubation; the addition of avibactam (AVI) decreased MICs to a susceptible range against these variants. In contrast, the use of CZA as a selective agent did not yield resistant clones. AVI inactivated both CTX-M-12 and CTX-M-96, with an apparent inhibition constant comparable to that of SHV-2 and 1,000-fold greater than that of PER-2 and CMY-2, and k2/K for CTX-M-12 was 24- and 35-fold higher than that for CTX-M-96 and CTX-M-15, respectively. Molecular modeling suggests that AVI interacts similarly with CTX-M-96 and CTX-M-15. We conclude that the impact of Asp240Gly in resistance may arise when other mechanisms are also present (i.e., OmpF deficiency). Additionally, CAZ selection could favor the emergence of CAZ-resistant subpopulations. These results define the role of Asp240 and the impact of the -Gly substitution and allow us to hypothesize that the use of CZA is an effective preventive strategy to delay the development of resistance in this family of extended-spectrum β-lactamases.
Collapse
|
5
|
TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies. Biochem J 2018; 475:1701-1719. [DOI: 10.1042/bcj20180085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation.
Collapse
|
6
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|