1
|
de Back TR, Wu T, Schafrat PJ, Ten Hoorn S, Tan M, He L, van Hooff SR, Koster J, Nijman LE, Vink GR, Beumer IJ, Elbers CC, Lenos KJ, Sommeijer DW, Wang X, Vermeulen L. A consensus molecular subtypes classification strategy for clinical colorectal cancer tissues. Life Sci Alliance 2024; 7:e202402730. [PMID: 38782602 PMCID: PMC11116811 DOI: 10.26508/lsa.202402730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Consensus Molecular Subtype (CMS) classification of colorectal cancer (CRC) tissues is complicated by RNA degradation upon formalin-fixed paraffin-embedded (FFPE) preservation. Here, we present an FFPE-curated CMS classifier. The CMSFFPE classifier was developed using genes with a high transcript integrity in FFPE-derived RNA. We evaluated the classification accuracy in two FFPE-RNA datasets with matched fresh-frozen (FF) RNA data, and an FF-derived RNA set. An FFPE-RNA application cohort of metastatic CRC patients was established, partly treated with anti-EGFR therapy. Key characteristics per CMS were assessed. Cross-referenced with matched benchmark FF CMS calls, the CMSFFPE classifier strongly improved classification accuracy in two FFPE datasets compared with the original CMSClassifier (63.6% versus 40.9% and 83.3% versus 66.7%, respectively). We recovered CMS-specific recurrence-free survival patterns (CMS4 versus CMS2: hazard ratio 1.75, 95% CI 1.24-2.46). Key molecular and clinical associations of the CMSs were confirmed. In particular, we demonstrated the predictive value of CMS2 and CMS3 for anti-EGFR therapy response (CMS2&3: odds ratio 5.48, 95% CI 1.10-27.27). The CMSFFPE classifier is an optimized FFPE-curated research tool for CMS classification of clinical CRC samples.
Collapse
Affiliation(s)
- Tim R de Back
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Tan Wu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascale Jm Schafrat
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Amsterdam, Netherlands
| | - Sanne Ten Hoorn
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Miaomiao Tan
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Lingli He
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sander R van Hooff
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Jan Koster
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
| | - Lisanne E Nijman
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Geraldine R Vink
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation, Utrecht, Netherlands
| | | | - Clara C Elbers
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Kristiaan J Lenos
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| | - Dirkje W Sommeijer
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Flevohospital, Department of Internal Medicine, Almere, Netherlands
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Louis Vermeulen
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, Netherlands
- https://ror.org/01n92vv28 Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
2
|
Zhou Y, Qi T, Yang Y, Li Z, Hou Z, Zhao X, Ge Q, Lu Z. Effect of Different Staining Methods on Brain Cryosections. ACS Chem Neurosci 2024; 15:2243-2252. [PMID: 38779816 DOI: 10.1021/acschemneuro.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Staining frozen sections is often required to distinguish cell types for spatial transcriptomic studies of the brain. The impact of the staining methods on the RNA integrity of the cells becomes one of the limitations of spatial transcriptome technology with microdissection. However, there is a lack of systematic comparisons of different staining modalities for the pretreatment of frozen sections of brain tissue as well as their effects on transcriptome sequencing results. In this study, four different staining methods were analyzed for their effect on RNA integrity in frozen sections of brain tissue. Subsequently, differences in RNA quality in frozen sections under different staining conditions and their impact on transcriptome sequencing results were assessed by RNA-seq. As one of the most commonly used methods for staining pathological sections, HE staining seriously affects the RNA quality of frozen sections of brain tissue. In contrast, the homemade cresyl violet staining method developed in this study has the advantages of short staining time, low cost, and less RNA degradation. The homemade cresyl violet staining proposed in this study can be applied instead of HE staining as an advance staining step for transcriptome studies in frozen sections of brain tissue. In the future, this staining method may be suitable for wide application in brain-related studies of frozen tissue sections. Moreover, it is expected to become a routine step for staining cells before sampling in brain science.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Mikami H, Noguchi S, Akatsuka J, Hasegawa H, Obayashi K, Takeda H, Endo Y, Toyama Y, Takei H, Kimura G, Kondo Y, Takizawa T. snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer. Cancers (Basel) 2024; 16:1757. [PMID: 38730709 PMCID: PMC11083327 DOI: 10.3390/cancers16091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In patients with high-risk prostate cancer (HRPC) after radical prostatectomy (RP), biochemical recurrence (BCR) increases the risk of distant metastasis. Accordingly, additional prognostic biomarkers are required to identify the subpopulation of patients with HRPC who develop clinical recurrence (CR) after BCR. The objective of this study was to identify biomarkers in formalin-fixed paraffin-embedded (FFPE) RP samples that are prognostic for CR in patients with HRPC who experience BCR after RP (post-RP BCR). First, we performed a preliminary RNA sequencing analysis to comprehensively profile RNA expression in FFPE RP samples obtained from patients with HRPC who developed CR after post-RP BCR and found that many snRNAs were very abundant in preserved FFPE samples. Subsequently, we used quantitative polymerase chain reaction (qPCR) to compare the expression levels of highly abundant snRNAs in FFPE RP samples from patients with HRPC with and without CR after post-RP BCR (21 CR patients and 46 non-CR patients who had more than 5 years of follow-up after BCR). The qPCR analysis revealed that the expression levels of snRNA RNU1-1/1-2 and RNU4-1 were significantly higher in patients with CR than in patients without CR. These snRNAs were significantly correlated with clinical recurrence-free survival (RFS) in patients with HRPC who experienced post-RP BCR. Furthermore, snRNA RNU1-1/1-2 could serve as an independent prognostic factor for clinical RFS in post-RP BCR of HRPC cases where known prognostic factors (e.g., Gleason score) cannot distinguish between CR and non-CR patients. Our findings provide new insights into the involvement of snRNAs in prostate cancer progression.
Collapse
Affiliation(s)
- Hikaru Mikami
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Jun Akatsuka
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hiroya Hasegawa
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Kotaro Obayashi
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hayato Takeda
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yuki Endo
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yuka Toyama
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hiroyuki Takei
- Department of Breast Surgical Oncology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Go Kimura
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan;
| |
Collapse
|
4
|
Todorova VK, Bauer MA, Azhar G, Wei JY. RNA sequencing of formalin fixed paraffin-embedded heart tissue provides transcriptomic information about chemotherapy-induced cardiotoxicity. Pathol Res Pract 2024; 257:155309. [PMID: 38678848 DOI: 10.1016/j.prp.2024.155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Gene expression of formalin-fixed paraffin-embedded (FFPE) tissue may serve for molecular studies on cardiovascular diseases. Chemotherapeutics, such as doxorubicin (DOX) may cause heart injury, but the mechanisms of these side effects of DOX are not well understood. This study aimed to investigate whether DOX-induced gene expression in archival FFPE heart tissue in experimental rats would correlate with the gene expression in fresh-frozen heart tissue by applying RNA sequencing technology. The results showed RNA from FFPE samples was degraded, resulting in a lower number of uniquely mapped reads. However, DOX-induced differentially expressed genes in FFPE were related to molecular mechanisms of DOX-induced cardiotoxicity, such as inflammation, calcium binding, endothelial dysfunction, senescence, and cardiac hypertrophy signaling. Our data suggest that, despite the limitations, RNA sequencing of archival FFPE heart tissue supports utilizing FFPE tissues from retrospective studies on cardiovascular disorders, including DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Michael A Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Simonian M, Lu DS, Whitelegge J, Cohn W, Ahuja P, Hsu W, Raman SS. Comparison of LIRADS 5 Image Guided Core Biopsy Derived From Formalin Fixed and Frozen Tissue Cores for Radiogenomics and Radioproteomics Analysis in Well, Moderate and Poorly Differentiated Hepatocellular Carcinoma. GLOBAL MEDICINE AND THERAPEUTICS 2024; 6:https://www.oatext.com/comparison-of-lirads-5-image-guided-core-biopsy-derived-from-formalin-fixed-and-frozen-tissue-cores-for-radiogenomics-and-radioproteomics-analysis-in-well-moderate-and-poorly-differentiated-hepatocellular-carcinoma.php. [PMID: 38818084 PMCID: PMC11138132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The aim of this pilot study is to evaluate and compare the quality of the genomics and proteomics data obtained from paired Formalin Fixed Paraffin Embedded (FFPE) and frozen (FF) tissue percutaneous core biopsies of Liver Imaging Reporting and Data System 5 (LIRADS 5) hepatocellular carcinoma (HCC) of varying histological grades. The preliminary data identified differentially expressed proteins and genes in poor, moderate and well differentiated HCC biopsies, with a greater efficacy in fresh frozen samples. The data offered valuable insights into the characteristics and suitability of samples for future studies.
Collapse
Affiliation(s)
- Margaret Simonian
- Dept of Radiological Sciences, David Geffen School of Medicine, UCLA, USA
| | - David S.K. Lu
- Dept of Radiological Sciences, David Geffen School of Medicine, UCLA, USA
| | - Julian Whitelegge
- Semel Institute for Neuroscience & Human Behavior, Pasarow mass spectrometry lab, David Geffen School of Medicine, UCLA, USA
| | - Whitaker Cohn
- Semel Institute for Neuroscience & Human Behavior, Pasarow mass spectrometry lab, David Geffen School of Medicine, UCLA, USA
| | - Preeti Ahuja
- Dept of Radiological Sciences, David Geffen School of Medicine, UCLA, USA
| | - William Hsu
- Dept of Radiological Sciences, David Geffen School of Medicine, UCLA, USA
| | - Steven S. Raman
- Dept of Radiological Sciences, David Geffen School of Medicine, UCLA, USA
| |
Collapse
|
6
|
Lin Y, Dong ZH, Ye TY, Yang JM, Xie M, Luo JC, Gao J, Guo AY. Optimization of FFPE preparation and identification of gene attributes associated with RNA degradation. NAR Genom Bioinform 2024; 6:lqae008. [PMID: 38298182 PMCID: PMC10830353 DOI: 10.1093/nargab/lqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are widely available specimens for clinical studies. However, RNA degradation in FFPE tissues often restricts their utility. In this study, we determined optimal FFPE preparation conditions, including tissue ischemia at 4°C (<48 h) or 25°C for a short time (0.5 h), 48-h fixation at 25°C and sampling from FFPE scrolls instead of sections. Notably, we observed an increase in intronic reads and a significant change in gene rank based on expression level in the FFPE as opposed to fresh-frozen (FF) samples. Additionally, we found that more reads were mapped to genes associated with chemical stimulus in FFPE samples. Furthermore, we demonstrated that more degraded genes in FFPE samples were enriched in genes with short transcripts and high free energy. Besides, we found 40 housekeeping genes exhibited stable expression in FF and FFPE samples across various tissues. Moreover, our study showed that FFPE samples yielded comparable results to FF samples in dimensionality reduction and pathway analyses between case and control samples. Our study established the optimal conditions for FFPE preparation and identified gene attributes associated with degradation, which would provide useful clues for the utility of FFPE tissues in clinical practice and research.
Collapse
Affiliation(s)
- Yu Lin
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Zhou-Huan Dong
- The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Ting-Yue Ye
- Nanjing Vazyme Biotech Co., Ltd., Nanjing 210000, China
| | - Jing-Min Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | | | - Jie Gao
- The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Karschnia P, Smits M, Reifenberger G, Le Rhun E, Ellingson BM, Galldiks N, Kim MM, Huse JT, Schnell O, Harter PN, Mohme M, von Baumgarten L, Albert NL, Huang RY, Mehta MP, van den Bent M, Weller M, Vogelbaum MA, Chang SM, Berger MS, Tonn JC. A framework for standardised tissue sampling and processing during resection of diffuse intracranial glioma: joint recommendations from four RANO groups. Lancet Oncol 2023; 24:e438-e450. [PMID: 37922934 PMCID: PMC10849105 DOI: 10.1016/s1470-2045(23)00453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Marion Smits
- Department of Neuroradiology and Nuclear Medicine, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital of Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany; Research Center Juelich, Institute of Neuroscience and Medicine, Juelich, Germany
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Schnell
- Department of Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Patrick N Harter
- German Cancer Consortium, Partner Site Munich, Munich, Germany; Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | | | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany.
| |
Collapse
|
8
|
Song K, Elboudwarej E, Zhao X, Zhuo L, Pan D, Liu J, Brachmann C, Patterson SD, Yoon OK, Zavodovskaya M. RNA-seq RNAaccess identified as the preferred method for gene expression analysis of low quality FFPE samples. PLoS One 2023; 18:e0293400. [PMID: 37883360 PMCID: PMC10602291 DOI: 10.1371/journal.pone.0293400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical tumor tissues that are preserved as formalin-fixed paraffin-embedded (FFPE) samples result in extensive cross-linking, fragmentation, and chemical modification of RNA, posing significant challenges for RNA-seq-based gene expression profiling. This study sought to define an optimal RNA-seq protocol for FFPE samples. We employed a common RNA extraction method and then compared RNA-seq library preparation protocols including RNAaccess, RiboZero and PolyA in terms of sequencing quality and concordance of gene expression using FFPE and case-matched fresh-frozen (FF) triple-negative breast cancer (TNBC) tissues. We found that RNAaccess, a method based on exome capture, produced the most concordant results. Applying RNAaccess to FFPE gastric cancer tissues, we established a minimum RNA DV200 requirement of 10% and a RNA input amount of 10ng that generated highly reproducible gene expression data. Lastly, we demonstrated that RNAaccess and NanoString platforms produced highly concordant expression profiles from FFPE samples for shared genes; however, RNA-seq may be preferred for clinical biomarker discovery work because of the broader coverage of the transcriptome. Taken together, these results support the selection of RNA-seq RNAaccess method for gene expression profiling of FFPE samples. The minimum requirements for RNA quality and input established here may allow for inclusion of clinical FFPE samples of sub-optimal quality in gene expression analyses and ultimately increasing the statistical power of such analyses.
Collapse
Affiliation(s)
- Kai Song
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Emon Elboudwarej
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Xi Zhao
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Luting Zhuo
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - David Pan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jinfeng Liu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Carrie Brachmann
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Scott D. Patterson
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Oh Kyu Yoon
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | |
Collapse
|
9
|
Kumar K, Hallikeri K, Oli A, Goni M, Jain A, Poyya J, Shilpasree AS, Javaregowda PK. Quantitative analysis of lncRNA in formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Biotechniques 2023; 75:133-142. [PMID: 37589188 DOI: 10.2144/btn-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
The study evaluated expression profiles of few regulatory lncRNAs in oral squamous cell carcinoma and normal mucosa adjacent to oral cancer using paired fresh frozen and formalin-fixed paraffin-embedded (FFPE) tissues stored at a different duration of time (1-5 years) using real-time quantitative PCR. The quantity and quality of total RNA isolated from FFPE tissues was less compared with that of fresh frozen tissues, which resulted in a noncorrelation of quantification cycle values. Following normalization, the expression of lncRNAs in the paired tissues did not differ significantly. The differential expression of the lncRNAs in the study was consistent with The Cancer Genome Atlas head and neck squamous cell carcinoma database. The study findings demonstrate the possibility of performing accurate quantitative analysis of lncRNAs using short amplicons and standardized real-time quantitative PCR assays in oral squamous cell carcinoma FFPE samples.
Collapse
Affiliation(s)
- Kiran Kumar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, SDM College of Dental Sciences and Hospital (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Kaveri Hallikeri
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, SDM College of Dental Sciences and Hospital (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Ajaykumar Oli
- Department of Biomedical Science, SDM Research Institute for Biomedical Sciences (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Mallikarjun Goni
- Department of Biomedical Science, SDM Research Institute for Biomedical Sciences (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Apoorva Jain
- Department of Biomedical Science, SDM Research Institute for Biomedical Sciences (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Jagadeesha Poyya
- Department of Biomedical Science, SDM Research Institute for Biomedical Sciences (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Alagilavada S Shilpasree
- Department of Biochemistry, SDM College of Medical Sciences and Hospital (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| | - Palaksha Kanive Javaregowda
- Department of Biomedical Science, SDM Research Institute for Biomedical Sciences (a constituent unit of Shri Dharmasthala Manjunatheshwara University), Dharwad, Karnataka State, 580009, India
| |
Collapse
|
10
|
Griesinger AM, Riemondy K, Eswaran N, Donson AM, Willard N, Prince EW, Paine SM, Bowes G, Rheaume J, Chapman RJ, Ramage J, Jackson A, Grundy RG, Foreman NK, Ritzmann TA. Multi-omic approach identifies hypoxic tumor-associated myeloid cells that drive immunobiology of high-risk pediatric ependymoma. iScience 2023; 26:107585. [PMID: 37694144 PMCID: PMC10484966 DOI: 10.1016/j.isci.2023.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ependymoma (EPN) is a devastating childhood brain tumor. Single-cell analyses have illustrated the cellular heterogeneity of EPN tumors, identifying multiple neoplastic cell states including a mesenchymal-differentiated subpopulation which characterizes the PFA1 subtype. Here, we characterize the EPN immune environment, in the context of both tumor subtypes and tumor cell subpopulations using single-cell sequencing (scRNAseq, n = 27), deconvolution of bulk tumor gene expression (n = 299), spatial proteomics (n = 54), and single-cell cytokine release assays (n = 12). We identify eight distinct myeloid-derived subpopulations from which a group of cells, termed hypoxia myeloid cells, demonstrate features of myeloid-derived suppressor cells, including IL6/STAT3 pathway activation and wound healing ontologies. In PFA tumors, hypoxia myeloid cells colocalize with mesenchymal-differentiated cells in necrotic and perivascular niches and secrete IL-8, which we hypothesize amplifies the EPN immunosuppressive microenvironment. This myeloid cell-driven immunosuppression will need to be targeted for immunotherapy to be effective in this difficult-to-cure childhood brain tumor.
Collapse
Affiliation(s)
- Andrea M. Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nithyashri Eswaran
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew M. Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric W. Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simon M.L. Paine
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Georgia Bowes
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | | | - Rebecca J. Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Judith Ramage
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrew Jackson
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Nicholas K. Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Timothy A. Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| |
Collapse
|
11
|
Boll LM, Perera-Bel J, Rodriguez-Vida A, Arpí O, Rovira A, Juanpere N, Vázquez Montes de Oca S, Hernández-Llodrà S, Lloreta J, Albà MM, Bellmunt J. The impact of mutational clonality in predicting the response to immune checkpoint inhibitors in advanced urothelial cancer. Sci Rep 2023; 13:15287. [PMID: 37714872 PMCID: PMC10504302 DOI: 10.1038/s41598-023-42495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment and can result in complete remissions even at advanced stages of the disease. However, only a small fraction of patients respond to the treatment. To better understand which factors drive clinical benefit, we have generated whole exome and RNA sequencing data from 27 advanced urothelial carcinoma patients treated with anti-PD-(L)1 monoclonal antibodies. We assessed the influence on the response of non-synonymous mutations (tumor mutational burden or TMB), clonal and subclonal mutations, neoantigen load and various gene expression markers. We found that although TMB is significantly associated with response, this effect can be mostly explained by clonal mutations, present in all cancer cells. This trend was validated in an additional cohort. Additionally, we found that responders with few clonal mutations had abnormally high levels of T and B cell immune markers, suggesting that a high immune cell infiltration signature could be a better predictive biomarker for this subset of patients. Our results support the idea that highly clonal cancers are more likely to respond to ICI and suggest that non-additive effects of different signatures should be considered for predictive models.
Collapse
Affiliation(s)
| | | | - Alejo Rodriguez-Vida
- Hospital del Mar Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Barcelona, Spain
| | - Oriol Arpí
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Barcelona, Spain
| | | | | | | | - Josep Lloreta
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Science, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Mar Albà
- Hospital del Mar Research Institute, Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Joaquim Bellmunt
- Hospital del Mar Research Institute, Barcelona, Spain.
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Wright S, Burkholz SR, Zelinsky C, Wittman C, Carback RT, Harris PE, Blankenberg T, Herst CV, Rubsamen RM. Survivin Expression in Luminal Breast Cancer and Adjacent Normal Tissue for Immuno-Oncology Applications. Int J Mol Sci 2023; 24:11827. [PMID: 37511584 PMCID: PMC10380623 DOI: 10.3390/ijms241411827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Survivin (BIRC5) is a tumor-associated antigen (TAA) overexpressed in various tumors but present at low to undetectable levels in normal tissue. Survivin is known to have a high expression in breast cancer (e.g., Ductal Carcinoma in situ (DCIS) and triple negative breast cancer). Previous studies have not compared survivin expression levels in DCIS tumor samples to levels in adjacent, normal breast tissue from the same patient. To ensure the effective use of survivin as a target for T cell immunotherapy of breast cancer, it is essential to ascertain the varying levels of survivin expression between DCIS tumor tissue samples and the adjacent normal breast tissue taken from the same patient simultaneously. Next-generation sequencing of RNA (RNA-seq) in normal breast tissue and tumor breast tissue from five women presenting with DCIS for lumpectomy was used to identify sequence variation and expression levels of survivin. The identity of both tumor and adjacent normal tissue samples were corroborated by histopathology. Survivin was overexpressed in human breast tissue tumor samples relative to the corresponding adjacent human normal breast tissue. Wild-type survivin transcripts were the predominant species identified in all tumor tissue sequenced. This study demonstrates upregulated expression of wild type survivin in DCIS tumor tissue versus normal breast tissue taken from the same patient at the same time, and provides evidence that developing selective cytotoxic T lymphocyte (CTL) immunotherapy for DCIS targeting survivin warrants further study.
Collapse
Affiliation(s)
- Sharon Wright
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Western Surgical Group, Reno, NV 89502, USA
| | - Scott R. Burkholz
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Cathy Zelinsky
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Connor Wittman
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Richard T. Carback
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Paul E. Harris
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Shasta Pathology Associates, Redding, CA 96001, USA
| | - Charles V. Herst
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Reid M. Rubsamen
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Bjørnetrø T, Bousquet PA, Redalen KR, Trøseid AMS, Lüders T, Stang E, Sanabria AM, Johansen C, Fuglestad AJ, Kersten C, Meltzer S, Ree AH. Next-generation sequencing reveals mitogenome diversity in plasma extracellular vesicles from colorectal cancer patients. BMC Cancer 2023; 23:650. [PMID: 37438741 DOI: 10.1186/s12885-023-11092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Recent reports have demonstrated that the entire mitochondrial genome can be secreted in extracellular vesicles (EVs), but the biological attributes of this cell-free mitochondrial DNA (mtDNA) remain insufficiently understood. We used next-generation sequencing to compare plasma EV-derived mtDNA to that of whole blood (WB), peripheral blood mononuclear cells (PBMCs), and formalin-fixed paraffin-embedded (FFPE) tumor tissue from eight rectal cancer patients and WB and fresh-frozen (FF) tumor tissue from eight colon cancer patients. METHODS Total DNA was isolated before the mtDNA was enriched by PCR with either two primer sets generating two long products or multiple primer sets (for the FFPE tumors), prior to the sequencing. mtDNA diversity was assessed as the total variant number, level of heteroplasmy (mutant mtDNA copies mixed with wild-type copies), variant distribution within the protein-coding genes, and the predicted functional effect of the variants in the different sample types. Differences between groups were compared by paired Student's t-test or ANOVA with Dunnett's multiple comparison tests when comparing matched samples from patients. Mann-Whitney U test was used when comparing differences between the cancer types and patient groups. Pearson correlation analysis was performed. RESULTS In both cancer types, EV mtDNA presented twice as many variants and had significantly more low-level heteroplasmy than WB mtDNA. The EV mtDNA variants were clustered in the coding regions, and the proportion of EV mtDNA variants that were missense mutations (i.e., estimated to moderately affect the mitochondrial protein function) was significantly higher than in WB and tumor tissues. Nonsense mutations (i.e., estimated to highly affect the mitochondrial protein function) were only observed in the tumor tissues and EVs. CONCLUSION Taken together, plasma EV mtDNA in CRC patients exhibits a high degree of diversity. TRIAL REGISTRATION ClinicalTrials.gov: NCT01816607 . Registered 22 March 2013.
Collapse
Affiliation(s)
- Tonje Bjørnetrø
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway.
| | - Paula A Bousquet
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Torben Lüders
- Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Stang
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Adriana M Sanabria
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
| | - Christin Johansen
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
| | - Anniken Jørlo Fuglestad
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research, Southern Hospital Trust, Kristiansand, Norway
| | - Christian Kersten
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
- Department of Research, Southern Hospital Trust, Kristiansand, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
15
|
Wang G, Yao Y, Huang H, Zhou J, Ni C. Multiomics technologies for comprehensive tumor microenvironment analysis in triple-negative breast cancer under neoadjuvant chemotherapy. Front Oncol 2023; 13:1131259. [PMID: 37284197 PMCID: PMC10239824 DOI: 10.3389/fonc.2023.1131259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and is characterized by abundant infiltrating immune cells within the microenvironment. As standard care, chemotherapy remains the fundamental neoadjuvant treatment in TNBC, and there is increasing evidence that supplementation with immune checkpoint inhibitors may potentiate the therapeutic efficiency of neoadjuvant chemotherapy (NAC). However, 20-60% of TNBC patients still have residual tumor burden after NAC and require additional chemotherapy; therefore, it is critical to understand the dynamic change in the tumor microenvironment (TME) during treatment to help improve the rate of complete pathological response and long-term prognosis. Traditional methods, including immunohistochemistry, bulk tumor sequencing, and flow cytometry, have been applied to elucidate the TME of breast cancer, but the low resolution and throughput may overlook key information. With the development of diverse high-throughput technologies, recent reports have provided new insights into TME alterations during NAC in four fields, including tissue imaging, cytometry, next-generation sequencing, and spatial omics. In this review, we discuss the traditional methods and the latest advances in high-throughput techniques to decipher the TME of TNBC and the prospect of translating these techniques to clinical practice.
Collapse
Affiliation(s)
- Gang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yao Yao
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Huanhuan Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Ni
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Comitani F, Nash JO, Cohen-Gogo S, Chang AI, Wen TT, Maheshwari A, Goyal B, Tio ES, Tabatabaei K, Mayoh C, Zhao R, Ho B, Brunga L, Lawrence JEG, Balogh P, Flanagan AM, Teichmann S, Huang A, Ramaswamy V, Hitzler J, Wasserman JD, Gladdy RA, Dickson BC, Tabori U, Cowley MJ, Behjati S, Malkin D, Villani A, Irwin MS, Shlien A. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat Med 2023; 29:656-666. [PMID: 36932241 PMCID: PMC10033451 DOI: 10.1038/s41591-023-02221-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/13/2023] [Indexed: 03/19/2023]
Abstract
The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.
Collapse
Affiliation(s)
- Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua O Nash
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sarah Cohen-Gogo
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Astra I Chang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Timmy T Wen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anant Maheshwari
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bipasha Goyal
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Earvin S Tio
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin Tabatabaei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Regis Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ben Ho
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Petra Balogh
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
| | - Adrienne M Flanagan
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, UK
- Research Department of Pathology, University College London Cancer Institute, London, UK
| | | | - Annie Huang
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jonathan D Wasserman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Rebecca A Gladdy
- Department of Surgical Oncology, Princess Margaret Cancer Centre/Mount Sinai Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David Malkin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anita Villani
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Jacobsen SB, Tfelt-Hansen J, Smerup MH, Andersen JD, Morling N. Comparison of whole transcriptome sequencing of fresh, frozen, and formalin-fixed, paraffin-embedded cardiac tissue. PLoS One 2023; 18:e0283159. [PMID: 36989279 PMCID: PMC10058139 DOI: 10.1371/journal.pone.0283159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
The use of fresh tissue for molecular studies is preferred but often impossible. Instead, frozen or formalin-fixed, paraffin-embedded (FFPE) tissues are widely used and constitute valuable resources for retrospective studies. We assessed the utility of cardiac tissue stored in different ways for gene expression analyses by whole transcriptome sequencing of paired fresh, frozen, and FFPE tissues. RNA extracted from FFPE was highly degraded. Sequencing of RNA from FFPE tissues yielded higher proportions of intronic and intergenic reads compared to RNA from fresh and frozen tissues. The global gene expression profiles varied with the storage conditions, particularly mitochondrial and long non-coding RNAs. However, we observed high correlations among protein-coding transcripts (ρ > 0.94) with the various storage conditions. We did not observe any significant storage effect on the allele-specific gene expression. However, FFPE had statistically significantly (p < 0.05) more discordant variant calls compared to fresh and frozen tissue. In conclusion, we found that frozen and FFPE tissues can be used for reliable gene expression analyses, provided that proper quality control is performed and caution regarding the technical variability is withheld.
Collapse
Affiliation(s)
- Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Holdgaard Smerup
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Reproducible and sensitive micro-tissue RNA sequencing from formalin-fixed paraffin-embedded tissues for spatial gene expression analysis. Sci Rep 2022; 12:19511. [PMID: 36376423 PMCID: PMC9663554 DOI: 10.1038/s41598-022-23651-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
Spatial transcriptome analysis of formalin-fixed paraffin-embedded (FFPE) tissues using RNA-sequencing (RNA-seq) provides interactive information on morphology and gene expression, which is useful for clinical applications. However, despite the advantages of long-term storage at room temperature, FFPE tissues may be severely damaged by methylene crosslinking and provide less gene information than fresh-frozen tissues. In this study, we proposed a sensitive FFPE micro-tissue RNA-seq method that combines the punching of tissue sections (diameter: 100 μm) and the direct construction of RNA-seq libraries. We evaluated a method using mouse liver tissues at two years after fixation and embedding and detected approximately 7000 genes in micro-punched tissue-spots (thickness: 10 μm), similar to that detected with purified total RNA (2.5 ng) equivalent to the several dozen cells in the spot. We applied this method to clinical FFPE specimens of lung cancer that had been fixed and embedded 6 years prior, and found that it was possible to determine characteristic gene expression in the microenvironment containing tumor and non-tumor cells of different morphologies. This result indicates that spatial gene expression analysis of the tumor microenvironment is feasible using FFPE tissue sections stored for extensive periods in medical facilities.
Collapse
|
19
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
20
|
Cuevas-Diaz Duran R, González-Orozco JC, Velasco I, Wu JQ. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front Cell Dev Biol 2022; 10:884748. [PMID: 36353512 PMCID: PMC9637968 DOI: 10.3389/fcell.2022.884748] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and there are currently no cures. Two types of common neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease (PD). Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) have become powerful tools to elucidate the inherent complexity and dynamics of the central nervous system at cellular resolution. This technology has allowed the identification of cell types and states, providing new insights into cellular susceptibilities and molecular mechanisms underlying neurodegenerative conditions. Exciting research using high throughput scRNA-seq and snRNA-seq technologies to study AD and PD is emerging. Herein we review the recent progress in understanding these neurodegenerative diseases using these state-of-the-art technologies. We discuss the fundamental principles and implications of single-cell sequencing of the human brain. Moreover, we review some examples of the computational and analytical tools required to interpret the extensive amount of data generated from these assays. We conclude by highlighting challenges and limitations in the application of these technologies in the study of AD and PD.
Collapse
Affiliation(s)
| | | | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
21
|
Exosome based analysis for Space Associated Neuro-Ocular Syndrome and health risks in space exploration. NPJ Microgravity 2022; 8:40. [PMID: 36104352 PMCID: PMC9474550 DOI: 10.1038/s41526-022-00225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMolecular profiling to characterize the effects of environmental exposures is important from the human health and performance as well as the occupational medicine perspective in space exploration. We have developed a novel exosome-based platform that allows profiling of biological processes in the body from a variety of body fluids. The technology is suitable for diagnostic applications as well as studying the pathophysiology of the Space Associated Neuro-Ocular Syndrome in astronauts and monitoring patients with chronically impaired cerebrospinal fluid drainage or elevated intracranial pressure. In this proof-of-concept, we demonstrate that: (a) exosomes from different biofluids contain a specific population of RNA transcripts; (b) urine collection hardware aboard the ISS is compatible with exosome gene expression technology; (c) cDNA libraries from exosomal RNA can be stored in dry form and at room temperature, representing an interesting option for the creation of longitudinal molecular catalogs that can be stored as a repository for retrospective analysis.
Collapse
|
22
|
Almeida D, Turecki G. Profiling cell-type specific gene expression in post-mortem human brain samples through laser capture microdissection. Methods 2022; 207:3-10. [PMID: 36064002 DOI: 10.1016/j.ymeth.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptome of a cell constitutes an essential piece of cellular identity and contributes to the multifaceted complexity and heterogeneity of cell-types within the mammalian brain. Thus, while a wealth of studies have investigated transcriptomic alterations underlying the pathophysiology of diseases of the brain, their use of bulk-tissue homogenates makes it difficult to tease apart whether observed differences are explained by disease state or cellular composition. Cell-type-specific enrichment strategies are, therefore, crucial in the context of gene expression profiling. Laser capture microdissection (LCM) is one such strategy that allows for the capture of specific cell-types, or regions of interest, under microscopic visualization. In this review, we focus on using LCM for cell-type specific gene expression profiling in post-mortem human brain samples. We begin with a discussion of various LCM systems, followed by a walk-through of each step in the LCM to gene expression profiling workflow and a description of some of the limitations associated with LCM. Throughout the review, we highlight important considerations when using LCM with post-mortem human brain samples. Whenever applicable, commercially available kits that have proven successful in the context of LCM with post-mortem human brain samples are described.
Collapse
Affiliation(s)
- Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3; Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1.
| |
Collapse
|
23
|
In silico validation of RNA-Seq results can identify gene fusions with oncogenic potential in glioblastoma. Sci Rep 2022; 12:14439. [PMID: 36002559 PMCID: PMC9402576 DOI: 10.1038/s41598-022-18608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Collapse
|
24
|
Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:4981-4997. [PMID: 35877256 PMCID: PMC9318743 DOI: 10.3390/curroncol29070396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has historically been associated with a poor prognosis and low 5-year survival, but the use of targeted therapies in NSCLC has improved patient outcomes over the past 10 years. The pace of development of new targeted therapies is accelerating, with the associated need for molecular testing of new targetable alterations. As the complexity of biomarker testing in NSCLC increases, there is a need for guidance on how to manage the fluid standard-of-care in NSCLC, identify pragmatic molecular testing requirements, and optimize result reporting. An expert multidisciplinary working group with representation from medical oncology, pathology, and clinical genetics convened via virtual meetings to create consensus recommendations for testing of new targetable alterations in NSCLC. The importance of accurate and timely testing of all targetable alterations to optimize disease management using targeted therapies was emphasized by the working group. Therefore, the panel of experts recommends that all targetable alterations be tested reflexively at NSCLC diagnosis as part of a comprehensive panel, using methods that can detect all relevant targetable alterations. In addition, comprehensive biomarker testing should be performed at the request of the treating clinician upon development of resistance to targeted therapy. The expert multidisciplinary working group also made recommendations for reporting to improve clarity and ease of interpretation of results by treating clinicians and to accommodate the rapid evolution in clinical actionability of these alterations. Molecular testing of all targetable alterations in NSCLC is the key for treatment decision-making and access to new therapies. These consensus recommendations are intended as a guide to further optimize molecular testing of new targetable alterations.
Collapse
|
25
|
Lehmann KV, Kahles A, Murr M, Rätsch G. RNA Instant Quality Check: Alignment-Free RNA-Degradation Detection. J Comput Biol 2022; 29:857-866. [PMID: 35776515 DOI: 10.1089/cmb.2021.0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the constant increase of large-scale genomic data projects, automated and high-throughput quality assessment becomes a crucial component of any analysis. Whereas small projects often have a more homogeneous design and a manageable structure allowing for a manual per-sample analysis of quality, large-scale studies tend to be much more heterogeneous and complex. Many quality metrics have been developed to assess the quality of an individual sample on the raw read level. Degradation effects are typically assessed based on the RNA integrity (RIN) score, or on postalignment data. In this study, we show that single commonly used quality criteria such as the RIN score alone are not sufficient to ensure RNA sample quality. We developed a new approach and provide an efficient tool that estimates RNA sample degradation by computing the 5'/3' bias based on all genes in an alignment-free manner. That enables degradation assessment right after data generation and not during the analysis procedure allowing for early intervention in the sample handling process. Our analysis shows that this strategy is fast, robust to annotation and differences in library size, and provides complementary quality information to RIN scores enabling the accurate identification of degraded samples.
Collapse
Affiliation(s)
- Kjong-van Lehmann
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Joint Research Center of Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany.,Cancer Research Center Cologne Essen, University Hospital Köln, Köln, Germany.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Andre Kahles
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Magdalena Murr
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zürich, Zürich, Switzerland.,Biomedical Informatics Research, University Hospital Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Zurich, Switzerland.,Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Almeida A, Gabriel M, Firlej V, Martin‐Jaular L, Lejars M, Cipolla R, Petit F, Vogt N, San‐Roman M, Dingli F, Loew D, Destouches D, Vacherot F, de la Taille A, Théry C, Morillon A. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer. J Extracell Vesicles 2022; 11:e12210. [PMID: 35527349 PMCID: PMC9081490 DOI: 10.1002/jev2.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and antitumourigenic functions by controlling the immune response. In contrast to extracellular nonvesicular RNA, few studies have addressed the full RNA content within human fluids' EVs and have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on six Formalin-Fixed-Paraffin-Embedded (FFPE) prostate cancer (PCa) tumour tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and enriched lnc/circular (circ)RNAs, strikingly common to an independent 20 patients' urinary cohort. Our full cellular and EVs transcriptome comparison within three PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 28 uEV-lncRNAs belonging to the cancer-related lncRNA census (CLC2). In addition, we found 15 uEV-lncRNAs, predicted to encode 768 high-affinity neoantigens, and for which three of the encoded-ORF produced detectable unmodified peptides by mass spectrometry. Our dual analysis of EVs-lnc/circRNAs both in urines' and in vitro's EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.
Collapse
Affiliation(s)
- Anna Almeida
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Departement de Recherche TranslationnellePSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Marc Gabriel
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Virginie Firlej
- AP‐HPHôpital H. MondorPlateforme de Ressources BiologiquesCréteilFrance
- Univ Paris Est CreteilUR TRePCaCréteilFrance
| | - Lorena Martin‐Jaular
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Matthieu Lejars
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Rocco Cipolla
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Floriane Petit
- Tumour BiologyINSERM U820, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Nicolas Vogt
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Mabel San‐Roman
- CNRS UMR3215, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | | | | | | | - Clotilde Théry
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Antonin Morillon
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| |
Collapse
|
27
|
Sirivisoot S, Kasantikul T, Techangamsuwan S, Radtanakatikanon A, Chen K, Lin TY, Rungsipipat A. Evaluation of 41 single nucleotide polymorphisms in canine diffuse large B-cell lymphomas using MassARRAY. Sci Rep 2022; 12:5120. [PMID: 35332215 PMCID: PMC8948224 DOI: 10.1038/s41598-022-09112-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma in dogs with a multicentric form. This study aimed to assemble 41 variants of the previously reported genes and to investigate these variants in canine DLBCL using the Agena MassARRAY platform. These variants were chosen based on the high prevalence observed in canine B- and T-cell lymphomas, their significance for target therapy, and compatibility for multiplex PCR amplification. Lymph node biopsy was performed from 60 dogs with B-cell lymphoma comprising 47 purebred and 13 crossbred dogs. All dogs presented single nucleotide polymorphisms (SNPs) at HYAL4 and SATB1 genes. The lesser mutual SNPs were observed at SEL1L, excluding a cocker spaniel, and c-Kit, with the exception of a pug and a French bulldog. Even though no statistical association was noted between each SNP and dog breed, purebreds were 3.88 times more likely to have a SNP at FLT3 rs852342480 (95%CI 0.50–45.03, p = 0.26), 3.64 times at TRAF3 F306X (95%CI 0.58–42.50, p = 0.43) and 2.66 times at TRAF3 E303EX (95%CI 0.56–13.12, p = 0.31). Also, DLBCL dogs (CHOP-based treatment) with c-Kit T425= had a poorer prognosis with shorter median overall survival times (OST) than dogs with the wild type. Dogs treated with COP chemotherapy and contained 3–5 variants at SEL1L were associated with decreased median OST. Therefore, this SNP’s lymphoma panel provides valuable information that we can use to outline a prognosis and develop a treatment plan for the targeted therapy of each dog.
Collapse
Affiliation(s)
- Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, SC, USA
| | - Somporn Techangamsuwan
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Araya Radtanakatikanon
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ken Chen
- SQ Reference Lab, Beiqing Road, Qingpu district, Shanghai, China
| | - Tzu-Yin Lin
- University of California Davis, Sacramento, CA, USA
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
28
|
Licht P, Mailänder V. Transcriptional Heterogeneity and the Microbiome of Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11030328. [PMID: 35159138 PMCID: PMC8834405 DOI: 10.3390/cells11030328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) presents with substantial clinical variability and transcriptional heterogeneity. In the recent years, several studies paved the way to elucidate aetiology and pathogenesis of CTCL using sequencing methods. Several T-cell subtypes were suggested as the source of disease thereby explaining clinical and transcriptional heterogeneity of CTCL entities. Several differentially expressed pathways could explain disease progression. However, exogenous triggers in the skin microenvironment also seem to affect CTCL status. Especially Staphylococcus aureus was shown to contribute to disease progression. Only little is known about the complex microbiome patterns involved in CTCL and how microbial shifts might impact this malignancy. Nevertheless, first hints indicate that the microbiome might at least in part explain transcriptional heterogeneity and that microbial approaches could serve in diagnosis and prognosis. Shaping the microbiome could be a treatment option to maintain stable disease. Here, we review current knowledge of transcriptional heterogeneity of and microbial influences on CTCL. We discuss potential benefits of microbial applications and microbial directed therapies to aid patients with CTCL burden.
Collapse
Affiliation(s)
- Philipp Licht
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
29
|
RNA-Seq for the detection of gene fusions in solid tumors: development and validation of the JAX FusionSeq™ 2.0 assay. J Mol Med (Berl) 2022; 100:323-335. [PMID: 35013752 DOI: 10.1007/s00109-021-02149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
Whole transcriptome sequencing (RNA-Seq) has gained prominence for the detection of fusions in solid tumors. Here, we describe the development and validation of an in-house RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, in formalin-fixed paraffin-embedded (FFPE) specimens, using seventy tumor samples with varying fusion status. Conditions were optimized for RNA input of 50 ng, shown to be adequate to call known fusions at as low as 20% neoplastic content. Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. Performance analysis of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility. This clinically developed and validated RNA-Seq-based approach for fusion detection in FPPE samples was shown to be on par if not superior to off-the-shelf commercially offered assays. With gene fusions implicated in a variety of cancer types, offering high-quality, low-cost molecular testing services for FFPE specimens will serve to best benefit the patient and the advancement of precision medicine in molecular oncology. KEY MESSAGES: A custom RNA-Seq-based test system (FusionSeq™ 2.0) for the detection of clinically actionable gene fusions, Evaluation of assay performance between FFPE and fresh-frozen (FF) tissues exhibited little to no difference in fusion calling capability. The assay can be performed with low RNA input and neoplastic content. Performance characteristics of the assay validation data determined 100% accuracy, sensitivity, specificity, and reproducibility.
Collapse
|
30
|
Jang JS, Holicky E, Lau J, McDonough S, Mutawe M, Koster MJ, Warrington KJ, Cuninngham JM. Application of the 3' mRNA-Seq using unique molecular identifiers in highly degraded RNA derived from formalin-fixed, paraffin-embedded tissue. BMC Genomics 2021; 22:759. [PMID: 34689749 PMCID: PMC8543821 DOI: 10.1186/s12864-021-08068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022] Open
Abstract
Background Archival formalin-fixed, paraffin-embedded (FFPE) tissue samples with clinical and histological data are a singularly valuable resource for developing new molecular biomarkers. However, transcriptome analysis remains challenging with standard mRNA-seq methods as FFPE derived-RNA samples are often highly modified and fragmented. The recently developed 3′ mRNA-seq method sequences the 3′ region of mRNA using unique molecular identifiers (UMI), thus generating gene expression data with minimal PCR bias. In this study, we evaluated the performance of 3′ mRNA-Seq using Lexogen QuantSeq 3′ mRNA-Seq Library Prep Kit FWD with UMI, comparing with TruSeq Stranded mRNA-Seq and RNA Exome Capture kit. The fresh-frozen (FF) and FFPE tissues yielded nucleotide sizes range from 13 to > 70% of DV200 values; input amounts ranged from 1 ng to 100 ng for validation. Results The total mapped reads of QuantSeq 3′ mRNA-Seq to the reference genome ranged from 99 to 74% across all samples. After PCR bias correction, 3 to 56% of total sequenced reads were retained. QuantSeq 3′ mRNA-Seq data showed highly reproducible data across replicates in Universal Human Reference RNA (UHR, R > 0.94) at input amounts from 1 ng to 100 ng, and FF and FFPE paired samples (R = 0.92) at 10 ng. Severely degraded FFPE RNA with ≤30% of DV200 value showed good concordance (R > 0.87) with 100 ng input. A moderate correlation was observed when directly comparing QuantSeq 3′ mRNA-Seq data with TruSeq Stranded mRNA-Seq (R = 0.78) and RNA Exome Capture data (R > 0.67). Conclusion In this study, QuantSeq 3′ mRNA-Seq with PCR bias correction using UMI is shown to be a suitable method for gene quantification in both FF and FFPE RNAs. 3′ mRNA-Seq with UMI may be applied to severely degraded RNA from FFPE tissues generating high-quality sequencing data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08068-1.
Collapse
Affiliation(s)
- Jin Sung Jang
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Eileen Holicky
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Julie Lau
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samantha McDonough
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mark Mutawe
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew J Koster
- Department of Internal Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Warrington
- Department of Internal Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cuninngham
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Wang J, Li R, Li J, Yi Y, Liu X, Chen J, Zhang H, Lu J, Li C, Wu H, Liang Z. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing. J Transl Med 2021; 19:433. [PMID: 34657620 PMCID: PMC8522100 DOI: 10.1186/s12967-021-03108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Colorectal carcinoma (CRC) harboring oncogenic fusions has been reported to be highly enriched in mismatch repair deficient (dMMR) tumors with MLH1 hypermethylation (MLH1me+) and wild-type BRAF and RAS. In this study, dMMR CRCs were screened for oncogene fusions using sequential DNA and RNA next generation sequencing (NGS). Results Comprehensive analysis of fusion variants, genetic profiles and clinicopathological features in fusion-positive dMMR CRCs was performed. Among 193 consecutive dMMR CRCs, 39 cases were identified as MLH1me+BRAF/RAS wild-type. Eighteen fusion-positive cases were detected by DNA NGS, all of which were MLH1me+ and BRAF/RAS wild-type. RNA NGS was sequentially conducted in the remaining 21 MLH1me+BRAF/RAS wild-type cases lacking oncogenic fusions by DNA NGS, and revealed four additional fusions, increasing the proportion of fusion-positive tumors from 46% (18/39) to 56% (22/39) in MLH1me+BRAF/RAS wild-type dMMR cases. All 22 fusions were found to involve RTK-RAS pathway. Most fusions affected targetable receptor tyrosine kinases, including NTRK1(9/22, 41%), NTRK3(5/22, 23%), ALK(3/22, 14%), RET(2/22, 9%) and MET(1/22, 5%), whilst only two fusions affected mitogen-activated protein kinase cascade components BRAF and MAPK1, respectively. RNF43 was identified as the most frequently mutated genes, followed by APC, TGFBR2, ATM, BRCA2 and FBXW7. The vast majority (19/22, 86%) displayed alterations in key WNT pathway components, whereas none harbored additional mutations in RTK-RAS pathway. In addition, fusion-positive tumors were typically diagnosed in elder patients and predominantly right-sided, and showed a significantly higher preponderance of hepatic flexure localization (P < 0.001) and poor differentiation (P = 0.019), compared to fusion-negative MLH1me+ CRCs. Conclusions We proved that sequential DNA and RNA NGS was highly effective for fusion detection in dMMR CRCs, and proposed an optimized practical fusion screening strategy. We further revealed that dMMR CRCs harboring oncogenic fusion was a genetically and clinicopathologically distinctive subgroup, and justified more precise molecular subtyping for personalized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03108-6.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiyu Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junjie Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Cami Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Skaftason A, Qu Y, Abdulla M, Nordlund J, Berglund M, Ednersson SB, Andersson PO, Enblad G, Amini RM, Rosenquist R, Mansouri L. Transcriptome sequencing of archived lymphoma specimens is feasible and clinically relevant using exome capture technology. Genes Chromosomes Cancer 2021; 61:27-36. [PMID: 34647650 DOI: 10.1002/gcc.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) specimens are an underutilized resource in medical research, particularly in the setting of transcriptome sequencing, as RNA from these samples is often degraded. We took advantage of an exome capture-based RNA-sequencing protocol to explore global gene expression in paired fresh-frozen (FF) and FFPE samples from 16 diffuse large B-cell lymphoma (DLBCL) patients. While FFPE samples generated fewer mapped reads compared to their FF counterparts, these reads captured the same library complexity and had a similar number of genes expressed on average. Furthermore, gene expression demonstrated a high correlation when comparing housekeeping genes only or across the entire transcriptome (r = 0.99 for both comparisons). Differences in gene expression were primarily seen in lowly expressed genes and genes with small or large coding sequences. Using cell-of-origin classifiers and clinically relevant gene expression signatures for DLBCL, FF, and FFPE samples from the same biopsy paired nearly perfectly in clustering analysis. This was further confirmed in a validation cohort of 50 FFPE DLBCL samples. In summary, we found the biological differences between tumors to be far greater than artifacts created as a result of degraded RNA. We conclude that exome capture transcriptome sequencing data from archival samples can confidently be used for cell-of-origin classification of DLBCL samples.
Collapse
Affiliation(s)
- Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Maysaa Abdulla
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Berglund
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Susanne Bram Ednersson
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Ola Andersson
- Department of Medicine, Section of Hematology, South Älvsborg Hospital, Borås, Sweden.,Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Narita Y, Muragaki Y, Kagawa N, Asai K, Nagane M, Matsuda M, Ueki K, Kuroda J, Date I, Kobayashi H, Kumabe T, Beppu T, Kanamori M, Kasai S, Nishimura Y, Xiong H, Ocampo C, Yamada M, Mishima K. Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: A nonrandomized, phase 1/2 trial. Cancer Sci 2021; 112:5020-5033. [PMID: 34609773 PMCID: PMC8645742 DOI: 10.1111/cas.15153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
INTELLANCE‐J was a phase 1/2 study of a potent antibody‐drug conjugate targeting epidermal growth factor receptor (EGFR), depatuxizumab mafodotin (Depatux‐M), as a second‐ or first‐line therapy, alone or combined with chemotherapy or chemoradiotherapy in 53 Japanese patients with World Health Organization (WHO) grade III/IV glioma. In second‐line arms, patients with EGFR‐amplified recurrent WHO grade III/IV glioma received Depatux‐M plus chemotherapy (temozolomide) or Depatux‐M alone regardless of EGFR status. In first‐line arms, patients with newly diagnosed WHO grade III/IV glioma received Depatux‐M plus chemoradiotherapy. The study was halted following lack of survival benefit with first‐line Depatux‐M in the global trial INTELLANCE‐1. The primary endpoint was 6‐month progression‐free survival (PFS) in patients with EGFR‐amplified tumors receiving second‐line Depatux‐M plus chemotherapy. Common nonocular treatment‐emergent adverse events (TEAEs) with both second‐line and first‐line Depatux‐M included lymphopenia (42%, 33%, respectively), thrombocytopenia (39%, 47%), alanine aminotransferase increase (29%, 47%), and aspartate aminotransferase increase (24%, 60%); incidence of grade ≥3 TEAEs was 66% and 53%, respectively. Ocular side effects (OSEs) occurred in 93% of patients receiving second‐line Depatux‐M plus chemotherapy and all patients receiving second‐line Depatux‐M alone or first‐line Depatux‐M plus chemoradiotherapy. Most OSEs were manageable with dose modifications and concomitant medications. The 6‐month PFS estimate was 25.6% (95% confidence interval [CI] 11.4‒42.6), and median PFS was 2.1 months (95% CI 1.9‒3.9) with second‐line Depatux‐M plus chemotherapy in the EGFR‐amplified subgroup. This study showed acceptable safety profile of Depatux‐M alone or plus chemotherapy/chemoradiotherapy in Japanese patients with WHO grade III/IV glioma. The study was registered at ClinicalTrials.gov (NCT02590263).
Collapse
Affiliation(s)
- Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Hospital, Osaka, Japan
| | - Katsunori Asai
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Motoo Nagane
- Faculty of Medicine, Department of Neurosurgery, Kyorin University, Tokyo, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, University of Tsukuba, Ibaraki, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Junichiro Kuroda
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Isao Date
- Department of Neurosurgery, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Hokkaido University Hospital, Hokkaido, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University Hospital, Kanagawa, Japan
| | - Takaaki Beppu
- Department of Neurosurgery, Iwate Medical University Hospital, Iwate, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Hospital, Miyagi, Japan
| | | | | | - Hao Xiong
- AbbVie Inc., North Chicago, Illinois, USA
| | | | - Masakazu Yamada
- Department of Ophthalmology, Kyorin University Hospital, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
34
|
Shohdy KS, Bareja R, Sigouros M, Wilkes DC, Dorsaint P, Manohar J, Bockelman D, Xiang JZ, Kim R, Ohara K, Eng K, Mosquera JM, Elemento O, Sboner A, Alonso A, Faltas BM. Functional comparison of exome capture-based methods for transcriptomic profiling of formalin-fixed paraffin-embedded tumors. NPJ Genom Med 2021; 6:66. [PMID: 34385467 PMCID: PMC8360986 DOI: 10.1038/s41525-021-00231-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The availability of fresh frozen (FF) tissue is a barrier for implementing RNA sequencing (RNA-seq) in the clinic. The majority of clinical samples are stored as formalin-fixed, paraffin-embedded (FFPE) tissues. Exome capture platforms have been developed for RNA-seq from FFPE samples. However, these methods have not been systematically compared. We performed transcriptomic analysis of 32 FFPE tumor samples from 11 patients using three exome capture-based methods: Agilent SureSelect V6, TWIST NGS Exome, and IDT XGen Exome Research Panel. We compared these methods to the TruSeq RNA-seq of fresh frozen (FF-TruSeq) tumor samples from the same patients. We assessed the recovery of clinically relevant biological features. The Spearman's correlation coefficients between the global expression profiles of the three capture-based methods from FFPE and matched FF-TruSeq were high (rho = 0.72-0.9, p < 0.05). A significant correlation between the expression of key immune genes between individual capture-based methods and FF-TruSeq (rho = 0.76-0.88, p < 0.05) was observed. All exome capture-based methods reliably detected outlier expression of actionable gene transcripts, including ERBB2, MET, NTRK1, and PPARG. In urothelial cancer samples, the Agilent assay was associated with the highest molecular subtype concordance with FF-TruSeq (Cohen's k = 0.7, p < 0.01). The Agilent and IDT assays detected all the clinically relevant fusions that were initially identified in FF-TruSeq. All FFPE exome capture-based methods had comparable performance and concordance with FF-TruSeq. Our findings will enable the implementation of RNA-seq in the clinic to guide precision oncology approaches.
Collapse
Affiliation(s)
- Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Clinical Oncology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Princesca Dorsaint
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Bockelman
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Rob Kim
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kentaro Ohara
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alicia Alonso
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Cui W, Xue H, Geng Y, Zhang J, Liang Y, Tian X, Wang Q. Effect of high variation in transcript expression on identifying differentially expressed genes in RNA-seq analysis. Ann Hum Genet 2021; 85:235-244. [PMID: 34341986 DOI: 10.1111/ahg.12441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Great efforts have been made on the algorithms that deal with RNA-seq data to enhance the accuracy and efficiency of differential expression (DE) analysis. However, no consensus has been reached on the proper threshold values of fold change and adjusted p-value for filtering differentially expressed genes (DEGs). It is generally believed that the more stringent the filtering threshold, the more reliable the result of a DE analysis. Nevertheless, by analyzing the impact of both adjusted p-value and fold change thresholds on DE analyses, with RNA-seq data obtained for three different cancer types from the Cancer Genome Atlas (TCGA) database, we found that, for a given sample size, the reproducibility of DE results became poorer when more stringent thresholds were applied. No matter which threshold level was applied, the overlap rates of DEGs were generally lower for small sample sizes than for large sample sizes. The raw read count analysis demonstrated that the transcript expression of the same gene in different samples, whether in tumor groups or in normal groups, showed high variations, which resulted in a drastic fluctuation in fold change values and adjustedp-values when different sets of samples were used. Overall, more stringent thresholds did not yield more reliable DEGs due to high variations in transcript expression; the reliability of DEGs obtained with small sample sizes was more susceptible to these variations. Therefore, less stringent thresholds are recommended for screening DEGs. Moreover, large sample sizes should be considered in RNA-seq experimental designs to reduce the interfering effect of variations in transcript expression on DEG identification.
Collapse
Affiliation(s)
- Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Huaru Xue
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Yifan Geng
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China.,Xuzhou Medical University, Xuzhou, P. R. China
| | - Jing Zhang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Yajun Liang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Xuewen Tian
- Shandong Sport University, Jinan, P. R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China.,Shandong Sport University, Jinan, P. R. China
| |
Collapse
|
36
|
Alenda C, Rojas E, Valor LM. FFPE samples from cavitational ultrasonic surgical aspirates are suitable for RNA profiling of gliomas. PLoS One 2021; 16:e0255168. [PMID: 34293049 PMCID: PMC8297856 DOI: 10.1371/journal.pone.0255168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023] Open
Abstract
During surgical procedures for gliomas, tissue material obtained from cavitational ultrasonic surgical aspirators (CUSAs) is generally discarded but can actually exceed the amount and quality of certain tumour core resections (TCRs). Despite reports indicating the suitability of CUSA-derived material for diagnosis and research, its use is still marginal. We extended these conclusions to formalin-fixed, paraffin-embedded (FFPE) samples, the most common format for archival tumour tissue in anatomical pathology departments, by conducting for the first time RNA-seq analysis in CUSA aspirates. We compared the molecular diagnosis of somatic mutations used in the clinical routine and the gene expression profiles of fixed solid material from CUSA aspirates and TCRs from the same patients in selected gliomas encompassing grades II to IV. Despite the characteristic heterogeneity of gliomas, we found substantial similarities between the corresponding aspirates and TCRs that included transcriptional signatures associated with glioma subtypes. Based on these results, we confirmed that CUSA-fixed biomaterials from glioma surgeries are appropriate for downstream applications and biomarkers screening.
Collapse
Affiliation(s)
- Cristina Alenda
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Estefanía Rojas
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Luis M. Valor
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario de Alicante, Alicante, Spain
- * E-mail:
| |
Collapse
|
37
|
Schou Nørøxe D, Flynn A, Westmose Yde C, Østrup O, Cilius Nielsen F, Skjøth-Rasmussen J, Brennum J, Hamerlik P, Weischenfeldt J, Skovgaard Poulsen H, Lassen U. Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study. Mol Oncol 2021; 16:206-218. [PMID: 34018316 PMCID: PMC8732341 DOI: 10.1002/1878-0261.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Treatment of glioblastoma (GBM) remains a challenging task, with limited treatment options, none offering a cure. Immune therapy has proven effective across different cancers with remarkable response rates. Tumor mutational burden (TMB) is a marker of response, but technical and methodological differences in TMB estimates have made a proper assessment and comparison challenging. Here, we analyzed a prospective collection of paired samples from 35 patients with newly diagnosed GBM, all of whom were wild‐type (WT) for isocitrate dehydrogenase, before and after treatment with radiotherapy and temozolomide. Seven patients (20%) had O6‐methylguanine‐DNA methyltransferase‐methylated tumors. Six patients (17%) had two relapse surgeries, and tissue from all three surgeries was collected. We found that accurate evaluation of TMB was confounded by high variability in the cancer cell fraction of relapse samples. To ameliorate this, we developed a model to adjust for tumor purity based on the relative density distribution of variant allele frequencies in each primary–relapse pair. Additionally, we examined the mutation spectra of shared and private mutations. After tumor purity adjustment, we found TMB comparison reliable in tumors with tumor purity between 15% and 40%, resulting in 27/35 patients (77.1%). TMB remained unchanged from 0.65 mutations per megabase (Mb) to 0.67/Mb before and after treatment, respectively. Examination of the mutation spectra revealed a dominance of C > T transitions at CpG sites in both shared and relapse‐private mutations, consistent with cytosine deamination and the clock‐like mutational signature 1. We present and apply a cellularity correction approach that enables more accurate assessment of TMB in paired tumor samples. We did not find a significant increase in TMB after correcting for cancer cell fraction. Our study raises significant concerns when determining TMB. Although a small sample size, corrected TMB can have a clinical significance when stratifying patients to experimental treatment, for example, immune checkpoint therapy.
Collapse
Affiliation(s)
- Dorte Schou Nørøxe
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Aidan Flynn
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | | | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Jannick Brennum
- Department of Neuro Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
38
|
Wagener-Ryczek S, Pappesch R. Targeted RNA-sequencing for the evaluation of gene fusions in lung tumors: current status and future prospects. Expert Rev Mol Diagn 2021; 21:531-534. [PMID: 33887162 DOI: 10.1080/14737159.2021.1920399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Svenja Wagener-Ryczek
- Institute for Pathology and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| | - Roberto Pappesch
- Institute for Pathology and Center for Integrated Oncology (CIO), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
39
|
Khalafallah AM, Huq S, Jimenez AE, Serra R, Bettegowda C, Mukherjee D. "Zooming in" on Glioblastoma: Understanding Tumor Heterogeneity and its Clinical Implications in the Era of Single-Cell Ribonucleic Acid Sequencing. Neurosurgery 2021; 88:477-486. [PMID: 32674143 DOI: 10.1093/neuros/nyaa305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults and one of the most aggressive of all human cancers. It is highly recurrent and treatment-resistant, in large part due to its infiltrative nature and inter- and intratumoral heterogeneity. This heterogeneity entails varying genomic landscapes and cell types within and between tumors and the tumor microenvironment (TME). In GBM, heterogeneity is a driver of treatment resistance, recurrence, and poor prognosis, representing a substantial impediment to personalized medicine. Over the last decade, sequencing technologies have facilitated deeper understanding of GBM heterogeneity by "zooming in" progressively further on tumor genomics and transcriptomics. Initial efforts employed bulk ribonucleic acid (RNA) sequencing, which examines composite gene expression of whole tumor specimens. While groundbreaking at the time, this bulk RNAseq masks the crucial contributions of distinct tumor subpopulations to overall gene expression. This work progressed to the use of bulk RNA sequencing in anatomically and spatially distinct tumor subsections, which demonstrated previously underappreciated genomic complexity of GBM. A revolutionary next step forward has been the advent of single-cell RNA sequencing (scRNAseq), which examines gene expression at the single-cell level. scRNAseq has enabled us to understand GBM heterogeneity in unprecedented detail. We review seminal studies in our progression of understanding GBM heterogeneity, with a focus on scRNAseq and the insights that it has provided into understanding the GBM tumor mass, peritumoral space, and TME. We highlight preclinical and clinical implications of this work and consider its potential to impact neuro-oncology and to improve patient outcomes via personalized medicine.
Collapse
Affiliation(s)
| | | | - Adrian E Jimenez
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Riccardo Serra
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Fusion transcript discovery using RNA sequencing in formalin-fixed paraffin-embedded specimen. Crit Rev Oncol Hematol 2021; 160:103303. [DOI: 10.1016/j.critrevonc.2021.103303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
|
41
|
Cui W, Xue H, Wei L, Jin J, Tian X, Wang Q. High heterogeneity undermines generalization of differential expression results in RNA-Seq analysis. Hum Genomics 2021; 15:7. [PMID: 33509298 PMCID: PMC7845028 DOI: 10.1186/s40246-021-00308-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. RESULTS Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. CONCLUSIONS High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.
Collapse
Affiliation(s)
- Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Huaru Xue
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Lei Wei
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Jinghua Jin
- Environmental Protection Research Institute of Light Industry, Beijing, 100089, China
| | - Xuewen Tian
- Shandong Sport University, Jinan, 250102, China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China.
| |
Collapse
|
42
|
Mattesen TB, Andersen CL, Bramsen JB. MethCORR infers gene expression from DNA methylation and allows molecular analysis of ten common cancer types using fresh-frozen and formalin-fixed paraffin-embedded tumor samples. Clin Epigenetics 2021; 13:20. [PMID: 33509261 PMCID: PMC7842045 DOI: 10.1186/s13148-021-01000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Transcriptional analysis is widely used to study the molecular biology of cancer and hold great biomarker potential for clinical patient stratification. Yet, accurate transcriptional profiling requires RNA of a high quality, which often cannot be retrieved from formalin-fixed, paraffin-embedded (FFPE) tumor tissue that is routinely collected and archived in clinical departments. To overcome this roadblock to clinical testing, we previously developed MethCORR, a method that infers gene expression from DNA methylation data, which is robustly retrieved from FFPE tissue. MethCORR was originally developed for colorectal cancer and with this study, we aim to: (1) extend the MethCORR method to 10 additional cancer types and (2) to illustrate that the inferred gene expression is accurate and clinically informative. Results Regression models to infer gene expression information from DNA methylation were developed for ten common cancer types using matched RNA sequencing and DNA methylation profiles (HumanMethylation450 BeadChip) from The Cancer Genome Atlas Project. Robust and accurate gene expression profiles were inferred for all cancer types: on average, the expression of 11,000 genes was modeled with good accuracy and an intra-sample correlation of R2 = 0.90 between inferred and measured gene expression was observed. Molecular pathway analysis and transcriptional subtyping were performed for breast, prostate, and lung cancer samples to illustrate the general usability of the inferred gene expression profiles: overall, a high correlation of r = 0.96 (Pearson) in pathway enrichment scores and a 76% correspondence in molecular subtype calls were observed when using measured and inferred gene expression as input. Finally, inferred expression from FFPE tissue correlated better with RNA sequencing data from matched fresh-frozen tissue than did RNA sequencing data from FFPE tissue (P < 0.0001; Wilcoxon rank-sum test). Conclusions In all cancers investigated, MethCORR enabled DNA methylation-based transcriptional analysis, thus enabling future analysis of cancer in situations where high-quality DNA, but not RNA, is available. Here, we provide the framework and resources for MethCORR modeling of ten common cancer types, thereby widely expanding the possibilities for transcriptional studies of archival FFPE material.
Collapse
Affiliation(s)
- Trine B Mattesen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Jesper B Bramsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
43
|
Gerber N, Brunner MAT, Jagannathan V, Leeb T, Gerhards NM, Welle MM, Dettwiler M. Transcriptional Differences between Canine Cutaneous Epitheliotropic Lymphoma and Immune-Mediated Dermatoses. Genes (Basel) 2021; 12:160. [PMID: 33504055 PMCID: PMC7912288 DOI: 10.3390/genes12020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Canine cutaneous epitheliotropic T-cell lymphoma (CETL) and immune-mediated T-cell predominant dermatoses (IMD) share several clinical and histopathological features, but differ substantially in prognosis. The discrimination of ambiguous cases may be challenging, as diagnostic tests are limited and may prove equivocal. This study aimed to investigate transcriptional differences between CETL and IMD, as a basis for further research on discriminating diagnostic biomarkers. We performed 100bp single-end sequencing on RNA extracted from formalin-fixed and paraffin-embedded skin biopsies from dogs with CETL and IMD, respectively. DESeq2 was used for principal component analysis (PCA) and differential gene expression analysis. Genes with significantly different expression were analyzed for enriched pathways using two different tools. The expression of selected genes and their proteins was validated by RT-qPCR and immunohistochemistry. PCA demonstrated the distinct gene expression profiles of CETL and IMD. In total, 503 genes were upregulated, while 4986 were downregulated in CETL compared to IMD. RT-qPCR confirmed the sequencing results for 5/6 selected genes tested, while the protein expression detected by immunohistochemistry was not entirely consistent. Our study revealed transcriptional differences between canine CETL and IMD, with similarities to human cutaneous lymphoma. Differentially expressed genes are potential discriminatory markers, but require further validation on larger sample collections.
Collapse
Affiliation(s)
- Nadja Gerber
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Grosstierpraxis Weibel + Werner, Oberdorfstrasse 15, 3438 Lauperswil, Switzerland
| | - Magdalena A. T. Brunner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3001 Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3001 Bern, Switzerland
| | - Nora M. Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Monika M. Welle
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| | - Martina Dettwiler
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (N.G.); (M.A.T.B.); (N.M.G.); (M.M.W.)
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (V.J.); (T.L.)
| |
Collapse
|
44
|
Chong IY, Starling N, Rust A, Alexander J, Aronson L, Llorca-Cardenosa M, Chauhan R, Chaudry A, Kumar S, Fenwick K, Assiotis I, Matthews N, Begum R, Wotherspoon A, Terlizzo M, Watkins D, Chau I, Lord CJ, Haider S, Rao S, Cunningham D. The Mutational Concordance of Fixed Formalin Paraffin Embedded and Fresh Frozen Gastro-Oesophageal Tumours Using Whole Exome Sequencing. J Clin Med 2021; 10:E215. [PMID: 33435284 PMCID: PMC7826535 DOI: 10.3390/jcm10020215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
1. BACKGROUND The application of massively parallel sequencing has led to the identification of aberrant druggable pathways and somatic mutations within therapeutically relevant genes in gastro-oesophageal cancer. Given the widespread use of formalin-fixed paraffin-embedded (FFPE) samples in the study of this disease, it would be beneficial, especially for the purposes of biomarker evaluation, to assess the concordance between comprehensive exome-wide sequencing data from archival FFPE samples originating from a prospective clinical study and those derived from fresh-frozen material. 2. METHODS We analysed whole-exome sequencing data to define the mutational concordance of 16 matched fresh-frozen and FFPE gastro-oesophageal tumours (N = 32) from a prospective clinical study. We assessed DNA integrity prior to sequencing and then identified coding mutations in genes that have previously been implicated in other cancers. In addition, we calculated the mutant-allele heterogeneity (MATH) for these samples. 3. RESULTS Although there was increased degradation of DNA in FFPE samples compared with frozen samples, sequencing data from only two FFPE samples failed to reach an adequate mapping quality threshold. Using a filtering threshold of mutant read counts of at least ten and a minimum of 5% variant allele frequency (VAF) we found that there was a high median mutational concordance of 97% (range 80.1-98.68%) between fresh-frozen and FFPE gastro-oesophageal tumour-derived exomes. However, the majority of FFPE tumours had higher mutant-allele heterogeneity (MATH) scores when compared with corresponding frozen tumours (p < 0.001), suggesting that FFPE-based exome sequencing is likely to over-represent tumour heterogeneity in FFPE samples compared to fresh-frozen samples. Furthermore, we identified coding mutations in 120 cancer-related genes, including those associated with chromatin remodelling and Wnt/β-catenin and Receptor Tyrosine Kinase signalling. 4. CONCLUSIONS These data suggest that comprehensive genomic data can be generated from exome sequencing of selected DNA samples extracted from archival FFPE gastro-oesophageal tumour tissues within the context of prospective clinical trials.
Collapse
Affiliation(s)
- Irene Y. Chong
- The Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (L.A.); (M.L.-C.)
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Naureen Starling
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Alistair Rust
- The Tissue Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (A.R.); (R.C.); (K.F.); (I.A.); (N.M.)
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (J.A.); (C.J.L.); (S.H.)
| | - Lauren Aronson
- The Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (L.A.); (M.L.-C.)
| | - Marta Llorca-Cardenosa
- The Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (L.A.); (M.L.-C.)
| | - Ritika Chauhan
- The Tissue Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (A.R.); (R.C.); (K.F.); (I.A.); (N.M.)
| | - Asif Chaudry
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Sacheen Kumar
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Kerry Fenwick
- The Tissue Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (A.R.); (R.C.); (K.F.); (I.A.); (N.M.)
| | - Ioannis Assiotis
- The Tissue Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (A.R.); (R.C.); (K.F.); (I.A.); (N.M.)
| | - Nik Matthews
- The Tissue Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; (A.R.); (R.C.); (K.F.); (I.A.); (N.M.)
| | - Ruwaida Begum
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Andrew Wotherspoon
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Monica Terlizzo
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - David Watkins
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Ian Chau
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - Christopher J. Lord
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (J.A.); (C.J.L.); (S.H.)
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (J.A.); (C.J.L.); (S.H.)
| | - Sheela Rao
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| | - David Cunningham
- The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (N.S.); (A.C.); (S.K.); (R.B.); (A.W.); (M.T.); (D.W.); (I.C.); (S.R.); (D.C.)
| |
Collapse
|
45
|
Mirizio E, Liu C, Yan Q, Waltermire J, Mandel R, Schollaert KL, Konnikova L, Wang X, Chen W, Torok KS. Genetic Signatures From RNA Sequencing of Pediatric Localized Scleroderma Skin. Front Pediatr 2021; 9:669116. [PMID: 34164359 PMCID: PMC8215272 DOI: 10.3389/fped.2021.669116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to explore the skin transcriptional profile in pediatric localized scleroderma (LS) to provide a better understanding of the altered immune and fibrotic pathways promoting disease. LS is a progressive disease of the skin and underlying tissue that causes significant functional disability and disfigurement, especially in developing children. RNA sequencing (RNAseq) technology allows for improved understanding of relevant cellular expression through transcriptome analysis of phases during LS disease progression (more active/inflammatory vs. inactive/fibrotic) and also permits the use of RNA extracted from existing paraffin-embedded skin tissue, which is important in pediatrics. A strong correlation was observed between the comparison of genes expressed between fresh (RNAlater) and paraffinized skin in healthy and LS subjects, supporting the use of paraffinized tissue. LS gene signatures compared to healthy controls showed a distinct expression of an inflammatory response gene signature (IRGS) composed of IFNγ-, IFNα-, and TNFα-associated genes. GSEA© enrichment analysis showed that the IRGS, including interferon-inducible chemokines such as CXCL9, CXCL10, CXCL11, and IFNγ itself, was more highly expressed in LS patients with more inflammatory lesions. The use of paraffinized skin for sequencing was proven to be an effective substitute for fresh skin by comparing gene expression profiles. The prevalence of the IFNγ signature in the lesion biopsies of active LS patients indicates that these genes reflect clinical activity parameters and may be the promoters of early, inflammatory disease.
Collapse
Affiliation(s)
- Emily Mirizio
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher Liu
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Yan
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julia Waltermire
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roosha Mandel
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaila L Schollaert
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Liza Konnikova
- Division of Neonatal Medicine, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinjun Wang
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn S Torok
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Escuin D, López-Vilaró L, Bell O, Mora J, Moral A, Pérez JI, Arqueros C, Ramón Y Cajal T, Lerma E, Barnadas A. MicroRNA-1291 Is Associated With Locoregional Metastases in Patients With Early-Stage Breast Cancer. Front Genet 2020; 11:562114. [PMID: 33343622 PMCID: PMC7738477 DOI: 10.3389/fgene.2020.562114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Evidence that microRNAs (miRNAs) regulate the various steps of metastasis is increasing. Several studies have looked at the miRNA expression profile in primary breast tumors but few have compared primary tumor and sentinel lymph node (SLN) metastasis. We correlated the expression of miRNAs with the SLN status and the outcome of axillary lymph node dissection (ALND) in 60 patients with early breast cancer. We profiled the expression of miRNAs in paired breast tumor samples and SLNs using the NextSeq500 Illumina platform and key findings were validated by qPCR. MultiMiR Bioconductor and Reactome pathways analysis were performed to identify target genes and signaling pathways affected by altered expressed miRNAs. Our results show that nine miRNAs were differentially expressed in tumor tissues (q ≤ 0.05). In tumor samples, a 13.5-fold up-regulation of miR-7641-2 (q < 0.001) and a 2.9-fold down-regulation of miR-1291 (q < 0.001) were associated with tumors with positive SLNs. However, only down-regulation of miR-1291 (q = 0.048) remained significant in paired SLNs samples. Interestingly, a 10.5 up-regulation of miR-1291 in SLNs samples was associated with additional axillary lymph node involvement (q < 0.001). The enrichment analyses showed that canonical and non-canonical WNT pathways and negative regulation of various receptor tyrosine kinases signaling pathways were targets of miR-1291 and supports the role of miR-1291 as a tumor suppressor gene (TSG). Further studies are warranted to investigate the use of miR-1291 as a surrogate biomarker of SLN node metastasis in patients with early-stage breast cancer.
Collapse
Affiliation(s)
- Daniel Escuin
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Laura López-Vilaró
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Bell
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Josefina Mora
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Moral
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | - Enrique Lerma
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Agustí Barnadas
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| |
Collapse
|
47
|
Beg S, Bareja R, Ohara K, Eng KW, Wilkes DC, Pisapia DJ, Zoughbi WA, Kudman S, Zhang W, Rao R, Manohar J, Kane T, Sigouros M, Xiang JZ, Khani F, Robinson BD, Faltas BM, Sternberg CN, Sboner A, Beltran H, Elemento O, Mosquera JM. Integration of whole-exome and anchored PCR-based next generation sequencing significantly increases detection of actionable alterations in precision oncology. Transl Oncol 2020; 14:100944. [PMID: 33190043 PMCID: PMC7674614 DOI: 10.1016/j.tranon.2020.100944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Frequency of clinically relevant mutations in solid tumors by targeted and whole-exome sequencing is ∼30%. Transcriptome analysis complements detection of actionable gene fusions in advanced cancer patients. Goal of this study was to determine the added value of anchored multiplex PCR (AMP)-based next-generation sequencing (NGS) assay to identify further potential drug targets, when coupled with whole-exome sequencing (WES). METHODS Selected series of fifty-six samples from 55 patients enrolled in our precision medicine study were interrogated by WES and AMP-based NGS. RNA-seq was performed in 19 cases. Clinically relevant and actionable alterations detected by three methods were integrated and analyzed. RESULTS AMP-based NGS detected 48 fusions in 31 samples (55.4%); 31.25% (15/48) were classified as targetable based on published literature. WES revealed 29 samples (51.8%) harbored targetable alterations. TMB-high and MSI-high status were observed in 12.7% and 1.8% of cases. RNA-seq from 19 samples identified 8 targetable fusions (42.1%), also captured by AMP-based NGS. When number of actionable fusions detected by AMP-based NGS were added to WES targetable alterations, 66.1% of samples had potential drug targets. When both WES and RNA-seq were analyzed, 57.8% of samples had targetable alterations. CONCLUSIONS This study highlights importance of an integrative genomic approach for precision oncology, including use of different NGS platforms with complementary features. Integrating RNA data (whole transcriptome or AMP-based NGS) significantly enhances detection of potential targets in cancer patients. In absence of fresh frozen tissue, AMP-based NGS is a robust method to detect actionable fusions using low-input RNA from archival tissue.
Collapse
Affiliation(s)
- Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Kenneth Wha Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - David C Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Wael Al Zoughbi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Wei Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Rema Rao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Troy Kane
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Jenny Zhaoying Xiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States
| | - Bishoy M Faltas
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Cora N Sternberg
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY, United States.
| |
Collapse
|
48
|
Esteve-Codina A, Alameda F, Carrato C, Pineda E, Arpí O, Martinez-García M, Mallo M, Gut M, Dabad M, Tortosa A, Del Barco S, Capellades J, Puig J, Gallego O, Pujol T, Oleaga L, Gil-Gil M, de Quintana-Schmidt C, Valduvieco I, Martinez-Cardús A, Bellosillo B, Muñoz-Marmol AM, Esteve A, Domenech M, Camins A, Craven-Bartle J, Villa S, Marruecos J, Domenech S, de la Iglesia N, Balana C. RNA sequencing and Immunohistochemistry Reveal ZFN7 as a Stronger Marker of Survival than Molecular Subtypes in G-CIMP-negative Glioblastoma. Clin Cancer Res 2020; 27:645-655. [PMID: 33106291 DOI: 10.1158/1078-0432.ccr-20-2141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma is the most aggressive brain tumor in adults and has few therapeutic options. The study of molecular subtype classifications may lead to improved prognostic classification and identification of new therapeutic targets. The Cancer Genome Atlas (TCGA) subtype classification has mainly been applied in U.S. clinical trials, while the intrinsic glioma subtype (IGS) has mainly been applied in European trials. EXPERIMENTAL DESIGN From paraffin-embedded tumor samples of 432 patients with uniformly treated, newly diagnosed glioblastoma, we built tissue microarrays for IHC analysis and applied RNA sequencing to the best samples to classify them according to TCGA and IGS subtypes. RESULTS We obtained transcriptomic results from 124 patients. There was a lack of agreement among the three TCGA classificatory algorithms employed, which was not solely attributable to intratumoral heterogeneity. There was overlapping of TCGA mesenchymal subtype with IGS cluster 23 and of TCGA classical subtype with IGS cluster 18. Molecular subtypes were not associated with prognosis, but levels of expression of 13 novel genes were identified as independent prognostic markers in glioma-CpG island methylator phenotype-negative patients, independently of clinical factors and MGMT methylation. These findings were validated in at least one external database. Three of the 13 genes were selected for IHC validation. In particular, high ZNF7 RNA expression and low ZNF7 protein expression were strongly associated with longer survival, independently of molecular subtypes. CONCLUSIONS TCGA and IGS molecular classifications of glioblastoma have no higher prognostic value than individual genes and should be refined before being applied to clinical trials.
Collapse
Affiliation(s)
- Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Oriol Arpí
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Mar Mallo
- Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Avelina Tortosa
- Laboratori de Quimio-resistència i Cáncer, School of Medicine and Health Sciences, University of Barcelona, Department of Fundamental Care and Medical-Surgical Nursing, Bellvitge Biomedical Research Institute (IDIBELL), Bellvitge, Spain
| | - Sonia Del Barco
- Medical Oncology, Institut Catala d'Oncologia (ICO), Hospital Josep Trueta, Girona, Spain
| | | | - Josep Puig
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital Josep Trueta, Girona, Spain
| | - Oscar Gallego
- Medical Oncology, Hospital de Sant Pau, Barcelona, Spain
| | - Teresa Pujol
- Radiology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Oleaga
- Radiology Department, Hospital Clínic, Barcelona, Spain
| | - Miquel Gil-Gil
- Neuro-Oncology Unit & Medical Oncology Department, Institut Catala d'Oncologia (ICO), Institut de Investigació Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | | | - Anna Martinez-Cardús
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Anna Esteve
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marta Domenech
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Angels Camins
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital de Bellvitge, Bellvitge, Spain
| | | | - Salvador Villa
- Radiation Therapy Department, Institut Catala d'Oncologia (ICO), Badalona, Spain
| | - Jordi Marruecos
- Radiation Oncology Department, Institut Catala d'Oncologia (ICO), Girona, Spain
| | - Sira Domenech
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Nuria de la Iglesia
- Glioma and Neural Stem Cell Group, Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Carmen Balana
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.
| |
Collapse
|
49
|
Large scale, robust, and accurate whole transcriptome profiling from clinical formalin-fixed paraffin-embedded samples. Sci Rep 2020; 10:17597. [PMID: 33077815 PMCID: PMC7572424 DOI: 10.1038/s41598-020-74483-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Transcriptome profiling can provide information of great value in clinical decision-making, yet RNA from readily available formalin-fixed paraffin-embedded (FFPE) tissue is often too degraded for quality sequencing. To assess the clinical utility of FFPE-derived RNA, we performed ribo-deplete RNA extractions on > 3200 FFPE slide samples; 25 of these had direct FFPE vs. fresh frozen (FF) replicates, 57 were sequenced in 2 different labs, 87 underwent multiple library analyses, and 16 had direct microdissected vs. macrodissected replicates. Poly-A versus ribo-depletion RNA extraction methods were compared using transcriptomes of TCGA cohort and 3116 FFPE samples. Compared to FF, FFPE transcripts coding for nuclear/cytoplasmic proteins involved in DNA packaging, replication, and protein synthesis were detected at lower rates and zinc finger family transcripts were of poorer quality. The greatest difference in extraction methods was in histone transcripts which typically lack poly-A tails. Encouragingly, the overall sequencing success rate was 81%. Exome coverage was highly concordant in direct FFPE and FF replicates, with 98% agreement in coding exon coverage and a median correlation of whole transcriptome profiles of 0.95. We provide strong rationale for clinical use of FFPE-derived RNA based on the robustness, reproducibility, and consistency of whole transcriptome profiling.
Collapse
|
50
|
Boneva S, Schlecht A, Böhringer D, Mittelviefhaus H, Reinhard T, Agostini H, Auw-Haedrich C, Schlunck G, Wolf J, Lange C. 3' MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. J Transl Med 2020; 100:1345-1355. [PMID: 32467590 PMCID: PMC7498368 DOI: 10.1038/s41374-020-0446-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
This study aims to compare the potential of standard RNA-sequencing (RNA-Seq) and 3' massive analysis of c-DNA ends (MACE) RNA-sequencing for the analysis of fresh tissue and describes transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) archival human samples by MACE. To compare MACE to standard RNA-Seq on fresh tissue, four healthy conjunctiva from four subjects were collected during vitreoretinal surgery, halved and immediately transferred to RNA lysis buffer without prior fixation and then processed for either standard RNA-Seq or MACE RNA-Seq analysis. To assess the impact of FFPE preparation on MACE, a third part was fixed in formalin and processed for paraffin embedding, and its transcriptional profile was compared with the unfixed specimens analyzed by MACE. To investigate the impact of FFPE storage time on MACE results, 24 FFPE-treated conjunctival samples from 24 patients were analyzed as well. Nineteen thousand six hundred fifty-nine transcribed genes were detected by both MACE and standard RNA-Seq on fresh tissue, while 3251 and 2213 transcripts were identified explicitly by MACE or RNA-Seq, respectively. Standard RNA-Seq tended to yield longer detected transcripts more often than MACE technology despite normalization, indicating that the MACE technology is less susceptible to a length bias. FFPE processing revealed negligible effects on MACE sequencing results. Several quality-control measurements showed that long-term storage in paraffin did not decrease the diversity of MACE libraries. We noted a nonlinear relation between storage time and the number of raw reads with an accelerated decrease within the first 1000 days in paraffin, while the numbers remained relatively stable in older samples. Interestingly, the number of transcribed genes detected was independent on FFPE storage time. RNA of sufficient quality and quantity can be extracted from FFPE samples to obtain comprehensive transcriptome profiling using MACE technology. We thus present MACE as a novel opportunity for utilizing FFPE samples stored in histological archives.
Collapse
Affiliation(s)
- Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|