1
|
DePina AJ, Lopes Gomes JA, Moreira AL, Niang EHA. Situational analysis of malaria in Cabo Verde: From endemic control to elimination, history, cases data and challenges ahead. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004153. [PMID: 39792907 PMCID: PMC11723648 DOI: 10.1371/journal.pgph.0004153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
On 12 January 2024, Cabo Verde was officially certified by the WHO as a malaria-free country after six consecutive years without local transmission. This study analysed the malaria history of Cabo Verde from 1953 to certification in 2024, highlighted the valuable lessons learned, and discussed challenges for prevention reintroduction. Malaria data from the last 35 years (1988-2022) were analysed using descriptive analyses, and cases were mapped using the USGS National Map Viewer. From 1988 to 2022, 3,089 malaria cases were reported, 2.381 (77.1%) locally and 708 (22.9%) imported. Imported cases were reported nationwide except on Brava Island. Six municipalities did not report any cases, while local cases were restricted to Santiago and Boavista, with 2.360 and 21 cases, respectively. Malaria history in the country revealed six remarkable steps and three periods of interruption in the transmission of local malaria cases. The last local cases were reported in Boavista in 2015 and Santiago in 2017. Since 2018, introduced cases have been recorded from time to time. Disease lethality was low, with ten malaria deaths from 2010 to 2023, and the highest value of 8.3% (3/36) recorded in 2011. With this certification, Cabo Verde became a reference in Africa for its health sector organisation, multisectoral, and partnership in malaria control. However, maintaining the certification presents several sustainability challenges for the country. Additionally, robust epidemiological and entomological surveillance, continued investigations, and ongoing research are crucial.
Collapse
Affiliation(s)
- Adilson José DePina
- Programa de Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde, Praia, Cabo Verde
| | | | - António Lima Moreira
- Programa Nacional de Luta contra as doenças de transmissão Vectorial e Problemas Ambientais, Ministério da Saúde, Praia, Cabo Verde
| | - El Hadji Amadou Niang
- Laboratoire d’Ecologie Vectorielle et Parasitaire (LEVP), Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
2
|
Kambou SS, Valente A, Agnew P, Hien DFDS, Yerbanga RS, Moiroux N, Dabire KR, Pennetier C, Cohuet A, Carrasco D. Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes. PLoS One 2024; 19:e0298512. [PMID: 38995958 PMCID: PMC11244766 DOI: 10.1371/journal.pone.0298512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.
Collapse
Affiliation(s)
- Sassan Simplice Kambou
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Adeline Valente
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Philip Agnew
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Domonbabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut des Sciences et Techniques (InSTech), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Kounbobr Roch Dabire
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - David Carrasco
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
3
|
Zahouli JZB, Edi CAV, Yao LA, Lisro EG, Adou M, Koné I, Small G, Sternberg ED, Koudou BG. Small-scale field evaluation of PermaNet ® Dual (a long-lasting net coated with a mixture of chlorfenapyr and deltamethrin) against pyrethroid-resistant Anopheles gambiae mosquitoes from Tiassalé, Côte d'Ivoire. Malar J 2023; 22:36. [PMID: 36726160 PMCID: PMC9893697 DOI: 10.1186/s12936-023-04455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Due to the rapid expansion of pyrethroid-resistance in malaria vectors in Africa, Global Plan for Insecticide Resistance Management (GPIRM) has recommended the development of long-lasting insecticidal nets (LLINs), containing insecticide mixtures of active ingredients with different modes of action to mitigate resistance and improve LLIN efficacy. This good laboratory practice (GLP) study evaluated the efficacy of the chlorfenapyr and deltamethrin-coated PermaNet® Dual, in comparison with the deltamethrin and synergist piperonyl butoxide (PBO)-treated PermaNet® 3.0 and the deltamethrin-coated PermaNet® 2.0, against wild free-flying pyrethroid-resistant Anopheles gambiae sensu lato (s.l.), in experimental huts in Tiassalé, Côte d'Ivoire (West Africa). METHODS PermaNet® Dual, PermaNet® 3.0 and PermaNet® 2.0, unwashed and washed (20 washes), were tested against free-flying pyrethroid-resistant An. gambiae s.l. in the experimental huts in Tiassalé, Côte d'Ivoire from March to August 2020. Complementary laboratory cone bioassays (daytime and 3-min exposure) and tunnel tests (nightly and 15-h exposure) were performed against pyrethroid-susceptible An. gambiae sensu stricto (s.s.) (Kisumu strain) and pyrethroid-resistant An. gambiae s.l. (Tiassalé strain). RESULTS PermaNet® Dual demonstrated significantly improved efficacy, compared to PermaNet® 3.0 and PermaNet® 2.0, against the pyrethroid-resistant An. gambiae s.l. Indeed, the experimental hut trial data showed that the mortality and blood-feeding inhibition in the wild pyrethroid-resistant An. gambiae s.l. were overall significantly higher with PermaNet® Dual compared with PermaNet® 3.0 and PermaNet® 2.0, for both unwashed and washed samples. The mortality with unwashed and washed samples were 93.6 ± 0.2% and 83.2 ± 0.9% for PermaNet® Dual, 37.5 ± 2.9% and 14.4 ± 3.9% for PermaNet® 3.0, and 7.4 ± 5.1% and 11.7 ± 3.4% for PermaNet® 2.0, respectively. Moreover, unwashed and washed samples produced the respective percentage blood-feeding inhibition of 41.4 ± 6.9% and 43.7 ± 4.8% with PermaNet® Dual, 51.0 ± 5.7% and 9.8 ± 3.6% with PermaNet® 3.0, and 12.8 ± 4.3% and - 13.0 ± 3.6% with PermaNet® 2.0. Overall, PermaNet® Dual also induced higher or similar deterrence, exophily and personal protection when compared with the standard PermaNet® 3.0 and PermaNet® 2.0 reference nets, with both unwashed and washed net samples. In contrast to cone bioassays, tunnel tests predicted the efficacy of PermaNet® Dual seen in the current experimental hut trial. CONCLUSION The deltamethrin-chlorfenapyr-coated PermaNet® Dual induced a high efficacy and performed better than the deltamethrin-PBO PermaNet® 3.0 and the deltamethrin-only PermaNet® 2.0, testing both unwashed and 20 times washed samples against the pyrethroid-susceptible and resistant strains of An. gambiae s.l. The inclusion of chlorfenapyr with deltamethrin in PermaNet® Dual net greatly improved protection and control of pyrethroid-resistant An. gambiae populations. PermaNet® Dual thus represents a promising tool, with a high potential to reduce malaria transmission and provide community protection in areas compromised by mosquito vector resistance to pyrethroids.
Collapse
Affiliation(s)
- Julien Z. B. Zahouli
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.449926.40000 0001 0118 0881Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire ,grid.416786.a0000 0004 0587 0574Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Constant A. V. Edi
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Laurence A. Yao
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Emmanuelle G. Lisro
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Marc Adou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,UFR Science de la Nature, Université Nagui-Abrogoua, Abidjan, Côte d’Ivoire
| | - Inza Koné
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.410694.e0000 0001 2176 6353Université Félix Houphouët-Boingy, Abidjan, Côte d’Ivoire
| | - Graham Small
- grid.452416.0Innovative Vector Control Consortium, Liverpool, UK
| | - Eleanore D. Sternberg
- Vestergaard Sàrl, Lausanne, Switzerland ,grid.48004.380000 0004 1936 9764Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA UK
| | - Benjamin G. Koudou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,UFR Science de la Nature, Université Nagui-Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
4
|
Lusiyana N, Ahdika A. Evaluating recurrent episodes of malaria incidence in Timika, Indonesia, through a Markovian multiple-state model. Infect Dis Model 2022; 7:261-276. [PMID: 35754556 PMCID: PMC9201011 DOI: 10.1016/j.idm.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 10/27/2022] Open
|
5
|
Nash RK, Lambert B, NʼGuessan R, Ngufor C, Rowland M, Oxborough R, Moore S, Tungu P, Sherrard-Smith E, Churcher TS. Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100047. [PMID: 35284856 PMCID: PMC8906077 DOI: 10.1016/j.crpvbd.2021.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) - the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools.
Collapse
Affiliation(s)
- Rebecca K. Nash
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK,Corresponding author.
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Raphael NʼGuessan
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d’Ivoire,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK,Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Sarah Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani, Tanzania,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland,University of Basel, Petersplatz 1, 4001, Basel, Switzerland,Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Patrick Tungu
- National Institute for Medical Research (NIMR), P.O. Box 9653, Dar Es Salaam, Tanzania
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
6
|
Clegban CMY, Camara S, Koffi AA, Ahoua Alou LP, Kabran Kouame JP, Koffi AF, Kouassi PK, Moiroux N, Pennetier C. Evaluation of Yahe ® and Panda ® 2.0 long-lasting insecticidal nets against wild pyrethroid-resistant Anopheles gambiae s.l. from Côte d'Ivoire: an experimental hut trial. Parasit Vectors 2021; 14:347. [PMID: 34210362 PMCID: PMC8247218 DOI: 10.1186/s13071-021-04843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) have played an important role in reducing the global malaria burden since 2000. They are a core prevention tool used widely by people at risk of malaria. The Vector Control Prequalification mechanism of the Word Health Organization (WHO-Vector Control PQ) established the testing and evaluation guidelines for LLINs before registration for public use. In the present study, two new brands of deltamethrin-impregnated nets (Yahe® LN and Panda® Net 2.0) were evaluated in an experimental hut against wild pyrethroid-resistant Anopheles gambiae s.l. in M'Bé nearby Bouaké, central Côte d'Ivoire. METHODS The performance of Yahe® LN and Panda® Net 2.0 was compared with that of PermaNet 2.0, conventionally treated nets (CTN), and untreated net to assess the blood-feeding inhibition, deterrence, induced exophily, and mortality. RESULTS Cone bioassay results showed that Panda® Net 2.0, PermaNet 2.0 and Yahe® LN (both unwashed and washed 20 times) induced > 95% knockdown or > 80% mortality of the susceptible Anopheles gambiae Kisumu strain. With the pyrethroid-resistant M'Bé strain, mortality rate for all treated nets did not exceed 70%. There was a significant reduction in entry and blood feeding (p < 0.05) and an increase in exophily and mortality rates (p < 0.05) with all treatments compared to untreated nets, except the CTNs. However, the personal protection induced by these treated nets decreased significantly after 20 washes. The performance of Panda® Net 2.0 was equal to PermaNet® 2.0 in terms of inhibiting blood feeding, but better than PermaNet® 2.0 in terms of mortality. CONCLUSION This study showed that Yahe® LN and Panda® Net 2.0 met the WHO Pesticide Evaluation Scheme (WHOPES) criteria to undergo phase III trial at the community level. Due to an increasing spread and development of pyrethroid resistance in malaria vectors, control of malaria transmission must evolve into an integrated vector management relying on a large variety of efficient control tools.
Collapse
Affiliation(s)
- Cyntia-Muriel Y Clegban
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire. .,Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire. .,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Soromane Camara
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - A Alphonsine Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | | | - A Fernand Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | | | | | - Cédric Pennetier
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.,MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
7
|
Kasinathan G, Sahu SS, Krishnamoorthy N, Baig MM, Thankachy S, Dash S, Subramanian S, Jambulingam P. Efficacy evaluation of Veeralin LN, a PBO-incorporated alpha-cypermethrin long-lasting insecticidal net against Anopheles culicifacies in experimental huts in Odisha State. Malar J 2020; 19:402. [PMID: 33172495 PMCID: PMC7654164 DOI: 10.1186/s12936-020-03480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022] Open
Abstract
Background The success of malaria control using long-lasting insecticidal nets (LLINs) is threatened by pyrethroid resistance developed by the malaria vectors, worldwide. To combat the resistance, synergist piperonyl butoxide (PBO) incorporated LLINs is one of the available options. In the current phase II hut trial, the efficacy of Veeralin®LN (an alpha-cypermethrin and PBO-incorporated net) was evaluated against Anopheles culicifacies, a pyrethroid resistant malaria vector. Methods The performance of Veeralin®LN was compared with MAGNet®LN and untreated net in reducing the entry, induced exit, mortality and blood feeding inhibition of target vector species. Results The performance of Veeralin was equal to MAGNet in terms of reducing hut entry, inhibiting blood feeding and inducing exophily, and with regard to causing mortality Veeralin was better than MAGNet. When compared to untreated net, a significant reduction in hut entry and blood feeding and an increase in exophily and mortality were observed with Veeralin. In cone bioassays, unwashed Veeralin caused > 80% mortality of An. culicifacies. Conclusions Veeralin performed equal to (entry, exit, feeding) or better than (mortality in huts and cone bioassays) MAGNet and could be an effective tool against pyrethroid resistant malaria vectors.
Collapse
Affiliation(s)
- Gunasekaran Kasinathan
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Sudhansu Sekhar Sahu
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
| | - Nallan Krishnamoorthy
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Mohammed Mustafa Baig
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Sonia Thankachy
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Smrutidhara Dash
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Swaminathan Subramanian
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Purushothaman Jambulingam
- Indian Council of Medical Research-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| |
Collapse
|
8
|
Carrasco D, Lefèvre T, Moiroux N, Pennetier C, Chandre F, Cohuet A. Behavioural adaptations of mosquito vectors to insecticide control. CURRENT OPINION IN INSECT SCIENCE 2019; 34:48-54. [PMID: 31247417 DOI: 10.1016/j.cois.2019.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Behavioural resistance to insecticides may be an important factor restraining the efficacy of vector control against mosquito-transmitted diseases. However, our understanding of the mechanisms underlying such behavioural resistance remains sparse. In this review, we focus on the behavioural adaptations of mosquito vectors in response to the use of insecticides and provide a general framework for guiding future investigations. We present our review of vector behaviour in the field and a conceptual classification of behavioural adaptations to insecticides. We emphasise that behavioural adaptations can result from constitutive or induced (i.e. phenotypically plastic) traits. Lastly, we identify gaps in knowledge limiting a better understanding of how mosquito behavioural adaptations may affect the fight against vector-borne diseases.
Collapse
Affiliation(s)
- David Carrasco
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Thierry Lefèvre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France; Institut Pierre Richet, Bouaké, Cote d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Massue DJ, Lorenz LM, Moore JD, Ntabaliba WS, Ackerman S, Mboma ZM, Kisinza WN, Mbuba E, Mmbaga S, Bradley J, Overgaard HJ, Moore SJ. Comparing the new Ifakara Ambient Chamber Test with WHO cone and tunnel tests for bioefficacy and non-inferiority testing of insecticide-treated nets. Malar J 2019; 18:153. [PMID: 31039788 PMCID: PMC6492396 DOI: 10.1186/s12936-019-2741-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants.
Collapse
Affiliation(s)
- Dennis J Massue
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Soccinstrase 57, 4002, Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
- National Institute for Medical Research, Amani Research Centre, P. O. Box 81, Muheza, Tanga, Tanzania.
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania.
| | - Lena M Lorenz
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jason D Moore
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Soccinstrase 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
| | | | - Samuel Ackerman
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
| | - Zawadi M Mboma
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - William N Kisinza
- National Institute for Medical Research, Amani Research Centre, P. O. Box 81, Muheza, Tanga, Tanzania
| | - Emmanuel Mbuba
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
| | - Selemani Mmbaga
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hans J Overgaard
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Sarah J Moore
- Epidemiology and Public Health Department, Swiss Institute of Tropical and Public Health, Soccinstrase 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- Ifakara Health Institute, P. O. Box 74, Bagamoyo, Pwani, Tanzania
| |
Collapse
|
10
|
Camara S, Koffi AA, Ahoua Alou LP, Koffi K, Kabran JPK, Koné A, Koffi MF, N'Guessan R, Pennetier C. Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d'Ivoire. Parasit Vectors 2018; 11:19. [PMID: 29310704 PMCID: PMC5759872 DOI: 10.1186/s13071-017-2546-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide resistance in malaria vectors is an increasing threat to vector control tools currently deployed in endemic countries. Resistance management must be an integral part of National Malaria Control Programmes’ (NMCPs) next strategic plans to alleviate the risk of control failure. This obviously will require a clear database on insecticide resistance to support the development of such a plan. The present work gathers original data on insecticide resistance between 2009 and 2015 across Côte d’Ivoire in West Africa. Methods Two approaches were adopted to build or update the resistance data in the country. Resistance monitoring was conducted between 2013 and 2015 in 35 sentinel sites across the country using the WHO standard procedure of susceptibility test on adult mosquitoes. Four insecticide families (pyrethroids, organochlorides, carbamates and organophosphates) were tested. In addition to this survey, we also reviewed the literature to assemble existing data on resistance between 2009 and 2015. Results High resistance levels to pyrethroids, organochlorides and carbamates were widespread in all study sites whereas some Anopheles populations remained susceptible to organophosphates. Three resistance mechanisms were identified, involving high allelic frequencies of kdr L1014F mutation (range = 0.46–1), relatively low frequencies of ace-1R (below 0.5) and elevated activity of insecticide detoxifying enzymes, mainly mixed function oxidases (MFO), esterase and glutathione S-transferase (GST) in almost all study sites. Conclusion This detailed map of resistance highlights the urgent need to develop new vector control tools to complement current long-lasting insecticidal nets (LLINs) although it is yet unclear whether these resistance mechanisms will impact malaria transmission control. Researchers, industry, WHO and stakeholders must urgently join forces to develop alternative tools. By then, NMCPs must strive to develop effective tactics or plans to manage resistance keeping in mind country-specific context and feasibility.
Collapse
Affiliation(s)
- Soromane Camara
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire.,Université Félix Houphouët Boigny (UFHB), 22 BP 582, Abidjan 22, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire.
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire
| | - Kouakou Koffi
- Université Félix Houphouët Boigny (UFHB), 22 BP 582, Abidjan 22, Côte d'Ivoire
| | - Jean-Paul K Kabran
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire
| | - Aboubacar Koné
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire
| | - Mathieu F Koffi
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire
| | - Raphaël N'Guessan
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire.,London School of Hygiene and Tropical Medicine, London, UK
| | - Cédric Pennetier
- Institut Pierre Richet/Institut National de Santé Publique (IPR/INSP), BP 1500, Bouake, Côte d'Ivoire. .,Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Control (MIVEGEC), UMR 5290 CNRS-IRD-UM, Montpellier, France.
| |
Collapse
|