1
|
Conceição EC, Salvato RS, Gomes KM, Guimarães AEDS, da Conceição ML, Souza e Guimarães RJDP, Sharma A, Furlaneto IP, Barcellos RB, Bollela VR, Anselmo LMP, Sisco MC, Niero CV, Ferrazoli L, Refrégier G, Lourenço MCDS, Gomes HM, de Brito AC, Catanho M, Duarte RS, Suffys PN, Lima KVB. Molecular epidemiology of Mycobacterium tuberculosis in Brazil before the whole genome sequencing era: a literature review. Mem Inst Oswaldo Cruz 2021; 116:e200517. [PMID: 33729319 PMCID: PMC7976556 DOI: 10.1590/0074-02760200517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Molecular-typing can help in unraveling epidemiological scenarios and improvement for disease control strategies. A literature review of Mycobacterium tuberculosis transmission in Brazil through genotyping on 56 studies published from 1996-2019 was performed. The clustering rate for mycobacterial interspersed repetitive units - variable tandem repeats (MIRU-VNTR) of 1,613 isolates were: 73%, 33% and 28% based on 12, 15 and 24-loci, respectively; while for RFLP-IS6110 were: 84% among prison population in Rio de Janeiro, 69% among multidrug-resistant isolates in Rio Grande do Sul, and 56.2% in general population in São Paulo. These findings could improve tuberculosis (TB) surveillance and set up a solid basis to build a database of Mycobacterium genomes.
Collapse
Affiliation(s)
- Emilyn Costa Conceição
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Programa de Pós-Graduação em Pesquisa Clínica e Doenças Infecciosas,
Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Laboratório de Bacteriologia e Bioensaios em Micobactérias, Rio de
Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Richard Steiner Salvato
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual
de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto
Alegre, RS, Brasil
| | - Karen Machado Gomes
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública
Sergio Arouca, Centro de Referência Professor Hélio Fraga, Laboratório de Referência
Nacional para Tuberculose e outras Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Arthur Emil dos Santos Guimarães
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| | - Marília Lima da Conceição
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| | | | - Abhinav Sharma
- International Institute of Information Technology, Department of
Data Science, Bangalore, India
| | | | - Regina Bones Barcellos
- Secretaria Estadual de Saúde do Rio Grande do Sul, Centro Estadual
de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto
Alegre, RS, Brasil
| | - Valdes Roberto Bollela
- Universidade de São Paulo, Departamento de Clínica Médica da
Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - Lívia Maria Pala Anselmo
- Universidade de São Paulo, Departamento de Clínica Médica da
Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - Maria Carolina Sisco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia
Paulo de Góes, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Cristina Viana Niero
- Universidade Federal de São Paulo, Departamento de Microbiologia,
Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Lucilaine Ferrazoli
- Instituto Adolfo Lutz, Centro de Bacteriologia, Núcleo de
Tuberculose e Micobacterioses, São Paulo, SP, Brasil
| | - Guislaine Refrégier
- Universit e Paris-Saclay, Ecologie Systematique Evolution, Centre
National de la Recherche Scientifique, AgroParisTech, Orsay, France
| | - Maria Cristina da Silva Lourenço
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia
Evandro Chagas, Laboratório de Bacteriologia e Bioensaios em Micobactérias, Rio de
Janeiro, RJ, Brasil
| | - Harrison Magdinier Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Artemir Coelho de Brito
- Coordenação Geral de Vigilância das Doenças de Transmissão
Respiratória de Condições Crônicas, Brasília, DF, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Rafael Silva Duarte
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia
Paulo de Góes, Laboratório de Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Philip Noel Suffys
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Biologia Molecular Aplicada a Micobactérias, Rio de Janeiro, RJ, Brasil
| | - Karla Valéria Batista Lima
- Universidade do Estado do Pará, Instituto de Ciências Biológicas e
da Saúde, Pós-Graduação Biologia Parasitária na Amazônia, Belém, PA, Brasil
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia,
Ananindeua, PA, Brasil
| |
Collapse
|
2
|
Liang PK, Zheng C, Xu XF, Zhao ZZ, Zhao CS, Li CH, Couvin D, Reynaud Y, Zozio T, Rastogi N, Sun Q. Local adaptive evolution of two distinct clades of Beijing and T families of Mycobacterium tuberculosis in Chongqing: a Bayesian population structure and phylogenetic study. Infect Dis Poverty 2020; 9:59. [PMID: 32487156 PMCID: PMC7268252 DOI: 10.1186/s40249-020-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
Background Beijing sub-pedigree 2 (BSP2) and T sub-lineage 6 (TSL6) are two clades belonging to Beijing and T family of Mycobacterium tuberculosis (MTB), respectively, defined by Bayesian population structure analysis based on 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR). Globally, over 99% of BSP2 and 89% of TSL6 isolates were distributed in Chongqing, suggesting their possible local adaptive evolution. The objective of this paper is to explore whether BSP2 and TSL6 originated by their local adaptive evolution from the specific isolates of Beijing and T families in Chongqing. Methods The genotyping data of 16 090 MTB isolates were collected from laboratory collection, published literatures and SITVIT database before subjected to Bayesian population structure analysis based on 24-loci MIRU-VNTR. Spacer Oligonucleotide Forest (Spoligoforest) and 24-loci MIRU-VNTR-based minimum spanning tree (MST) were used to explore their phylogenetic pathways, with Bayesian demographic analysis for exploring the recent demographic change of TSL6. Results Phylogenetic analysis suggested that BSP2 and TSL6 in Chongqing may evolve from BSP4 and TSL5, respectively, which were locally predominant in Tibet and Jiangsu, respectively. Spoligoforest showed that Beijing and T families were genetically distant, while the convergence of the MIRU-VNTR pattern of BSP2 and TSL6 was revealed by WebLogo. The demographic analysis concluded that the recent demographic change of TSL6 might take 111.25 years. Conclusions BSP2 and TSL6 clades might originate from BSP4 and TSL5, respectively, by their local adaptive evolution in Chongqing. Our study suggests MIRU-VNTR be combined with other robust markers for a more comprehensive genotyping approach, especially for families of clades with the same MIRU-VNTR pattern.
Collapse
Affiliation(s)
- Peng-Kuan Liang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Chao Zheng
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.,Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of SUSTC, Shenzhen, 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Xu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Zhe-Ze Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.,School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chang-Song Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Chang-He Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.
| |
Collapse
|
3
|
Poonawala H, Kumar N, Peacock SJ. A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. INFECTION GENETICS AND EVOLUTION 2019; 78:104072. [PMID: 31618692 DOI: 10.1016/j.meegid.2019.104072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTBC) lineages differ in clinical presentation, virulence, transmission, drug resistance and immunological responses. Despite having the largest burden of tuberculosis (TB) in the world, strains from India are underrepresented in international databases. We reviewed published spoligotype data to determine the distribution and diversity of MTBC lineages in India. METHODS A Pubmed/MEDLINE search identified 34 M. tuberculosis spoligotyping studies from India. Spoligotype patterns were extracted and the Spoligotype International Type (SIT) number, sub-lineage and lineage determined. Minimum Spanning Trees were used to determine relationships between patterns. RESULTS We identified 1528 spoligotype patterns distributed across 8300 isolates; 6733 isolates belonged to 472 SITs, with 53% of all isolates belonging to 12 SITs with at least 100 isolates each. Lineage 1 and Lineage 3 made up 67% of all isolates, although a lineage could not be assigned for 16% of isolates. Lineage 1 isolates were most common in Southern, Western and Eastern India, and Lineage 3 was most common in Northern and Central India. The RULE, CBN and KBBN lineage prediction algorithms from the TB-lineage tools performed variably, with the correct lineage predicted correctly for only 64% of patterns with known lineage. Using a consensus definition, 64% of the 1359 isolates with unknown lineage were assigned to Lineage 1, and 14% each were assigned to Lineages 3 and 4. With these lineage assignments, 80% of all isolates belonged to either Lineage 1 or Lineage 3. CONCLUSION Our findings indicate significant M. tuberculosis diversity in India. The documentation of 1056 orphan and unreported patterns indicate that this diversity is under-represented in global databases.
Collapse
Affiliation(s)
- Husain Poonawala
- National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; Institute of Public Health, Banashankari, Bangalore 560070, India.
| | - Narender Kumar
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
4
|
Couvin D, Reynaud Y, Rastogi N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One 2019; 14:e0219706. [PMID: 31299060 PMCID: PMC6625721 DOI: 10.1371/journal.pone.0219706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The East African Indian (EAI) and Central Asian (CAS) lineages of Mycobacterium tuberculosis complex (MTBC) mainly infect tuberculosis (TB) patients in the eastern hemisphere which contains many of the 22 high TB burden countries including China and India. We investigated if phylogeographical, epidemiological and demographical characteristics for these 2 lineages differed in SITVIT2 database. Genotyping results and associated data (age, sex, HIV serology, drug resistance) on EAI and CAS lineages (n = 10,974 strains) were extracted. Phylogenetic and Bayesian, and other statistical analyses were used to compare isolates. The male/female sex ratio was 907/433 (2.09) for the EAI group vs. 881/544 (1.62) for CAS (p-value<0.002). The proportion of younger patients aged 0-20 yrs. with CAS lineage was significantly higher than for EAI lineage (18.07% vs. 10.85%, p-value<0.0001). The proportion of multidrug resistant and extensively drug resistant TB among CAS group (30.63% and 1.03%, respectively) was significantly higher than in the EAI group (12.14% and 0.29%, respectively; p-value<0.0001). Lastly, the proportion of HIV+ patients was 20.34% among the EAI group vs. 3.46% in the CAS group (p-value<0.0001). This remarkable split observed between various parameters for these 2 lineages was further corroborated by their geographic distribution profile (EAI being predominantly found in Eastern-Coast of Africa, South-India and Southeast Asia, while CAS was predominantly found in Afghanistan, Pakistan, North India, Nepal, Middle-east, Libya, Sudan, Ethiopia, Kenya and Tanzania). Some geo-specificities were highlighted. This study demonstrated a remarkable cleavage for aforementioned characteristics of EAI and CAS lineages, showing a North-South divide along the tropic of cancer in Eastern hemisphere-mainly in Asia, and partly prolonged along the horn of Africa. Such studies would be helpful to better comprehend prevailing TB epidemic in context of its historical spread and evolutionary features, and provide clues to better treatment and patient-care in countries and regions concerned by these lineages.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
- * E-mail: (DC); (NR)
| |
Collapse
|