1
|
Niu J, Teng X, Zhang J. Aberrant splicing caused by a novel KMT2A variant in Wiedemann-Steiner syndrome. Mol Genet Genomic Med 2024; 12:e2415. [PMID: 38488438 PMCID: PMC10941593 DOI: 10.1002/mgg3.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
INTRODUCTION Wiedemann-Steiner syndrome (WSS) is a rare autosomal-dominant disorder caused by KMT2A variants. The aim of this study was to characterize a novel KMT2A variant in a child with WSS and demonstrate integrated diagnostic approaches. METHODS A 3-year-old female with developmental delay, distinctive facial features, and anal fistula underwent whole exome sequencing (WES). RNA analysis was performed to assess splicing effects caused by a novel variant. RESULTS WES identified novel heterozygous KMT2A c.5664+6T>C variant initially classified as a variant of uncertain significance. RNA analysis provided evidence of aberrant splicing (exon 20 skipping), allowing reclassification to likely pathogenic. The patient exhibited typical WSS features along with a potential novel finding of anal fistula. CONCLUSION This report describes a novel non-canonical splice site variant in KMT2A associated with WSS. RNA analysis was critical for variant reclassification. Detailed phenotypic evaluation revealed common and expanded WSS manifestations. This case highlights the importance of combining clinical assessment, DNA testing, and RNA functional assays for the diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Jianing Niu
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Jiaxing Maternity and Child Health Care Hospital, College of MedicineJiaxing UniversityJiaxingChina
| | - Xiaoming Teng
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Junyu Zhang
- Reproductive Medicine Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
2
|
Deng M, Mao H. Inborn errors of immunity in mainland China: the past, present and future. BMJ Paediatr Open 2023; 7:e002002. [PMID: 37474202 PMCID: PMC10357751 DOI: 10.1136/bmjpo-2023-002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Inborn errors of immunity (IEI), also known as primary immunodeficiency diseases, comprise a group of rare genetic disorders that affect the development or/and function of the immune system. These disorders predispose individuals to recurrent infections, autoimmunity, cancer and immune dysregulations. The field of IEI diagnosis and treatment in mainland China has made significant strides in recent years due to advances in genome sequencing, genetics, immunology and treatment strategies. However, the accessibility and affordability of diagnostic facilities and precision treatments remain variable among different regions. With the increasing government emphasis on rare disease prevention, diagnosis, and treatment, the field of IEI is expected to progress further in mainland China. Herein, we reviewed the development and current state of IEI in mainland China, highlighting the achievements made, as well as opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mengyue Deng
- Department of Immunology, Beijing Children's Hospital of Capital Medical University, National Center for Children's Health of China, Beijing, China
| | - Huawei Mao
- Department of Immunology, Beijing Children's Hospital of Capital Medical University, National Center for Children's Health of China, Beijing, China
- Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Key Laboratory for Genetics of Birth Defects, Beijing, China
| |
Collapse
|
3
|
Gao L, Zhang J, Han X, Hu W, Sun J, Tan Y, Zhao X, Hua R, Wang S, Zhang Y, Wang Y, Wu Y. A rare cardiac phenotype of dextrocardia observed in a fetus with 1p36 deletion syndrome and a balanced translocation: a prenatal case report. Mol Cytogenet 2020; 13:48. [PMID: 33292381 PMCID: PMC7670715 DOI: 10.1186/s13039-020-00514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Chromosome 1p36 deletion syndrome is a contiguous genetic disorder with multiple congenital anomalies and mental retardation. It has been emerging as one of the most common terminal deletion syndromes in humans with the rapid utility of microarray analysis. However, the prenatal findings of 1p36 deletion syndrome are still limited. We report a fetus with 1p36 deletion and cardiac phenotype of dextrocardia, combined with a balanced translocation between chromosome 5 and 6. The phenotype of dextrocardia is rarely reported in prenatal 1p36 deletion cases. Case presentation We present a prenatal 1p36 deletion case with congenital heart diseases and single umbilical artery. Fetal echocardiography showed dextrocardia, ventricular septal defect and pericardial effusion. Fetal karyotype revealed a de novo balanced translocation of 46,XY,t(5;6)(q11.2;q23.3). Chromosomal microarray analysis detected a pathogenic deletion in 1p36.21p36.12, with the size of 6.38 Mb. Further whole genome sequencing revealed that the balanced translocation disrupted the EYA4 and ITGA1 genes. Conclusions Although congenital heart diseases are very common clinical manifestations among patients with 1p36 deletion, dextrocardia is a quite rare cardiac phenotype. This is the second case with 1p36 deletion and dextrocardia, and the first prenatally diagnosed 1p36 deletion case with dextrocardia. Our case indicates that genes in 1p36 are associated with not only heart structural anomalies, but also cardiac laterality development. Our results also imply that the EYA4 gene disrupted by the balanced translocation might be related with the cardiac development.
Collapse
Affiliation(s)
- Li Gao
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Junyu Zhang
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xu Han
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Wenjing Hu
- Department of Reproductive Genetics, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jinling Sun
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuru Tan
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xinrong Zhao
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Renyi Hua
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Shan Wang
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yan Zhang
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yanlin Wang
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yi Wu
- Prenatal Diagnostic Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
4
|
Chen Y, Liu X, Chen S, Zhang J, Xu C. Targeted Sequencing and RNA Assay Reveal a Noncanonical JAG1 Splicing Variant Causing Alagille Syndrome. Front Genet 2020; 10:1363. [PMID: 32038717 PMCID: PMC6993058 DOI: 10.3389/fgene.2019.01363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Alagille syndrome (ALGS), as known as congenital arteriohepatic dysplasia, is a rare autosomal dominant multi-systemic disorder. Mutations in JAG1 or more rarely NOTCH2 have been reported as the cause of ALGS. In this study, a 5-year old girl with typical ALGS feature and her pregnant mother came to our reproductive genetics clinic for counseling. We aimed to clarify the genetic diagnosis and provide prenatal genetic diagnosis for the pregnant. Next generation sequencing (NGS)-based multigene panel was used to identify pathogenic variant of the proband. Then the candidate variant was verified by using Sanger sequencing. RNA assay was performed to clarify splicing effect of the candidate variant. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We found a novel de novo noncanonical JAG1 splicing variant (c.2917-8C > A) in the proband. Peripheral blood RNA assay suggested that the mutant transcript might escape nonsense-mediated messenger RNA (mRNA) decay (NMD) and encode a C-terminal truncated protein. Information of the variant has resulted in a successful prenatal diagnosis of the fetus. Our results clarified the genetic diagnosis of an ALGS patient and ensured utility of prenatal genetic testing.
Collapse
Affiliation(s)
- Yiyao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xueli Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Junyu Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|