1
|
Singnurkar A, Poon R, Metser U. Head-to-Head Comparison of the Diagnostic Performance of FDG PET/CT and FDG PET/MRI in Patients With Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2024; 223:e2431519. [PMID: 39016450 DOI: 10.2214/ajr.24.31519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND. The available evidence on the use of FDG PET/MRI performed using an integrated system in patients with cancer has grown substantially. OBJECTIVE. The purpose of this study was to perform a systematic review and meta-analysis comparing the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer. EVIDENCE ACQUISITION. MEDLINE, Embase, and the Cochrane Database of Systematic Reviews were searched for studies reporting a head-to-head comparison of the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer from July 1, 2015, to January 25, 2023. The two modalities' diagnostic performance was summarized, stratified by performance end point. For end points with sufficient data, a meta-analysis was performed using bivariate modeling to produce summary estimates of pooled sensitivity and specificity. For the remaining end points, reported performance in individual studies was recorded. EVIDENCE SYNTHESIS. The systematic review included 29 studies with a total of 1656 patients. For patient-level detection of regional nodal metastases (five studies), pooled sensitivity and specificity for PET/MRI were 88% (95% CI, 74-95%) and 92% (95% CI, 71-98%), respectively, and for PET/CT were 86% (95% CI, 70-94%) and 86% (95% CI, 68-95%). For lesion-level detection of recurrence and/or metastases (five studies), pooled sensitivity and specificity for PET/MRI were 94% (95% CI, 78-99%) and 83% (95% CI, 76-88%), respectively, and for PET/CT were 91% (95% CI, 77-96%) and 81% (95% CI, 72-88%). In individual studies not included in the meta-analysis, PET/MRI in comparison with PET/CT showed staging accuracy in breast cancer of 98.0% versus 74.5% and in colorectal cancer of 96.2% versus 69.2%; sensitivity for primary tumor detection in cervical cancer of 93.2% versus 66.2%; and sensitivity, specificity, and accuracy for lesion-level liver metastasis detection of 91.1-98.0% versus 42.3-71.1%, 100.0% versus 83.3-98.6%, and 96.5-98.2% versus 44.7-86.7%, respectively. In three studies, management was more commonly impacted by information from PET/MRI (5.2-11.1%) than PET/CT (0.0-2.6%). CONCLUSION. PET/MRI showed comparable or superior diagnostic performance versus PET/CT across a range of cancers and end points. CLINICAL IMPACT. The findings help to identify clinical settings where PET/MRI may provide clinical benefit for oncologic evaluation. TRIAL REGISTRATION. Prospective Register of Systematic Reviews CRD42023433857.
Collapse
Affiliation(s)
- Amit Singnurkar
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Raymond Poon
- Department of Oncology, Program in Evidence-Based Care, Ontario Health, Cancer Care Ontario, McMaster University, Juravinski Hospital and Cancer Centre, 711 Concession St, G Wing, 2nd Fl, Hamilton, ON L8V 1C3, Canada
| | - Ur Metser
- Department of Medical Imaging, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
2
|
Ebrahimi S, Lundström E, Batasin SJ, Hedlund E, Stålberg K, Ehman EC, Sheth VR, Iranpour N, Loubrie S, Schlein A, Rakow-Penner R. Application of PET/MRI in Gynecologic Malignancies. Cancers (Basel) 2024; 16:1478. [PMID: 38672560 PMCID: PMC11048306 DOI: 10.3390/cancers16081478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The diagnosis, treatment, and management of gynecologic malignancies benefit from both positron emission tomography/computed tomography (PET/CT) and MRI. PET/CT provides important information on the local extent of disease as well as diffuse metastatic involvement. MRI offers soft tissue delineation and loco-regional disease involvement. The combination of these two technologies is key in diagnosis, treatment planning, and evaluating treatment response in gynecological malignancies. This review aims to assess the performance of PET/MRI in gynecologic cancer patients and outlines the technical challenges and clinical advantages of PET/MR systems when specifically applied to gynecologic malignancies.
Collapse
Affiliation(s)
- Sheida Ebrahimi
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Elin Lundström
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85 Uppsala, Sweden
- Center for Medical Imaging, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Elisabeth Hedlund
- Department of Surgical Sciences, Radiology, Uppsala University, 751 85 Uppsala, Sweden
| | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, 751 85 Uppsala, Sweden
| | - Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vipul R. Sheth
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA; (V.R.S.)
| | - Negaur Iranpour
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA; (V.R.S.)
| | - Stephane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra Schlein
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Allahqoli L, Hakimi S, Laganà AS, Momenimovahed Z, Mazidimoradi A, Rahmani A, Fallahi A, Salehiniya H, Ghiasvand MM, Alkatout I. 18F-FDG PET/MRI and 18F-FDG PET/CT for the Management of Gynecological Malignancies: A Comprehensive Review of the Literature. J Imaging 2023; 9:223. [PMID: 37888330 PMCID: PMC10607780 DOI: 10.3390/jimaging9100223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro- D-glucose integrated with computed tomography (18F-FDG PET/CT) or magnetic resonance imaging (18F-FDG PET/MRI) has emerged as a promising tool for managing various types of cancer. This review study was conducted to investigate the role of 18F- FDG PET/CT and FDG PET/MRI in the management of gynecological malignancies. SEARCH STRATEGY We searched for relevant articles in the three databases PubMed/MEDLINE, Scopus, and Web of Science. SELECTION CRITERIA All studies reporting data on the FDG PET/CT and FDG PET MRI in the management of gynecological cancer, performed anywhere in the world and published exclusively in the English language, were included in the present study. DATA COLLECTION AND ANALYSIS We used the EndNote software (EndNote X8.1, Thomson Reuters) to list the studies and screen them on the basis of the inclusion criteria. Data, including first author, publication year, sample size, clinical application, imaging type, and main result, were extracted and tabulated in Excel. The sensitivity, specificity, and diagnostic accuracy of the modalities were extracted and summarized. MAIN RESULTS After screening 988 records, 166 studies published between 2004 and 2022 were included, covering various methodologies. Studies were divided into the following five categories: the role of FDG PET/CT and FDG-PET/MRI in the management of: (a) endometrial cancer (n = 30); (b) ovarian cancer (n = 60); (c) cervical cancer (n = 50); (d) vulvar and vagina cancers (n = 12); and (e) gynecological cancers (n = 14). CONCLUSIONS FDG PET/CT and FDG PET/MRI have demonstrated potential as non-invasive imaging tools for enhancing the management of gynecological malignancies. Nevertheless, certain associated challenges warrant attention.
Collapse
Affiliation(s)
- Leila Allahqoli
- Ministry of Health and Medical Education, Tehran 1467664961, Iran
| | - Sevil Hakimi
- Faculty of Nursing and Midwifery, Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran;
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Zohre Momenimovahed
- Department of Midwifery and Reproductive Health, Qom University of Medical Sciences, Qom 3716993456, Iran;
| | - Afrooz Mazidimoradi
- Neyriz Public Health Clinic, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Azam Rahmani
- Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran 141973317, Iran;
| | - Arezoo Fallahi
- Department of Public Health, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj 6617713446, Iran;
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran;
| | - Mohammad Matin Ghiasvand
- Department of Computer Engineering, Amirkabir University of Technology (AUT), Tehran 1591634311, Iran;
| | - Ibrahim Alkatout
- University Hospitals Schleswig-Holstein, Campus Kiel, Kiel School of Gynaecological Endoscopy, Arnold-Heller-Str. 3, Haus 24, 24105 Kiel, Germany;
| |
Collapse
|
4
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
5
|
Tarcha Z, Konstantinoff KS, Ince S, Fraum TJ, Sadowski EA, Bhosale PR, Derenoncourt PR, Zulfiqar M, Shetty AS, Ponisio MR, Mhlanga JC, Itani M. Added Value of FDG PET/MRI in Gynecologic Oncology: A Pictorial Review. Radiographics 2023; 43:e230006. [PMID: 37410624 DOI: 10.1148/rg.230006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Fluorine 18-fluorodeoxyglucose (FDG) PET and MRI independently play a valuable role in the management of patients with gynecologic malignancies, particularly endometrial and cervical cancer. The PET/MRI hybrid imaging technique combines the metabolic information obtained from PET with the excellent soft-tissue resolution and anatomic details provided by MRI in a single examination. MRI is the modality of choice for assessment of local tumor extent in the pelvis, whereas PET is used to assess for local-regional spread and distant metastases. The authors discuss the added value of FDG PET/MRI in imaging gynecologic malignancies of the pelvis, with a focus on the role of FDG PET/MRI in diagnosis, staging, assessing treatment response, and characterizing complications. PET/MRI allows better localization and demarcation of the extent of disease, characterization of lesions and involvement of adjacent organs and lymph nodes, and improved differentiation of benign from malignant tissues, as well as detection of the presence of distant metastasis. It also has the advantages of decreased radiation dose and a higher signal-to-noise ratio of a prolonged PET examination of the pelvis contemporaneous with MRI. The authors provide a brief technical overview of PET/MRI, highlight how simultaneously performed PET/MRI can improve stand-alone MRI and PET/CT in gynecologic malignancies, provide an image-rich review to illustrate practical and clinically relevant applications of this imaging technique, and review common pitfalls encountered in clinical practice. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Ziad Tarcha
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Katerina S Konstantinoff
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Semra Ince
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Tyler J Fraum
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Elizabeth A Sadowski
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Priya R Bhosale
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Paul-Robert Derenoncourt
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Maria Zulfiqar
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Anup S Shetty
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Maria R Ponisio
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Joyce C Mhlanga
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO, 63110-8131 (Z.T., K.S.K., S.I., T.J.F., P.R.D., A.S.S., M.R.P., J.C.M., M.I.); Department of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, Wis (E.A.S.); Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex (P.R.B.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (M.Z.)
| |
Collapse
|
6
|
Romeo V, Helbich TH, Pinker K. Breast PET/MRI Hybrid Imaging and Targeted Tracers. J Magn Reson Imaging 2023; 57:370-386. [PMID: 36165348 PMCID: PMC10074861 DOI: 10.1002/jmri.28431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
The recent introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) as a promising imaging modality for breast cancer assessment has prompted fervent research activity on its clinical applications. The current knowledge regarding the possible clinical applications of hybrid PET/MRI is constantly evolving, thanks to the development and clinical availability of hybrid scanners, the development of new PET tracers and the rise of artificial intelligence (AI) techniques. In this state-of-the-art review on the use of hybrid breast PET/MRI, the most promising advanced MRI techniques (diffusion-weighted imaging, dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, and chemical exchange saturation transfer) are discussed. Current and experimental PET tracers (18 F-FDG, 18 F-NaF, choline, 18 F-FES, 18 F-FES, 89 Zr-trastuzumab, choline derivatives, 18 F-FLT, and 68 Ga-FAPI-46) are described in order to provide an overview on their molecular mechanisms of action and corresponding clinical applications. New perspectives represented by the use of radiomics and AI techniques are discussed. Furthermore, the current strengths and limitations of hybrid PET/MRI in the real world are highlighted. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Thomas H Helbich
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria
| | - Katja Pinker
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Mirshahvalad SA, Metser U, Basso Dias A, Ortega C, Yeung J, Veit-Haibach P. 18F-FDG PET/MRI in Detection of Pulmonary Malignancies: A Systematic Review and Meta-Analysis. Radiology 2023; 307:e221598. [PMID: 36692397 DOI: 10.1148/radiol.221598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background There have been conflicting results regarding fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI diagnostic performance in lung malignant neoplasms. Purpose To evaluate the diagnostic performance of 18F-FDG PET/MRI for the detection of pulmonary malignant neoplasms. Materials and Methods A systematic search was conducted within the Scopus, Web of Science, and PubMed databases until December 31, 2021. Published original articles that met the following criteria were considered eligible for meta-analysis: (a) detecting malignant lesions in the lung, (b) comparing 18F-FDG PET/MRI with a valid reference standard, and (c) providing data for the meta-analytic calculations. A hierarchical method was used to pool the performances. The bivariate model was used to find the summary points and 95% CIs. The hierarchical summary receiver operating characteristic model was used to draw the summary receiver operating characteristic curve and calculate the area under the curve. The Higgins I2 statistic and Cochran Q test were used for heterogeneity assessment. Results A total of 43 studies involving 1278 patients met the inclusion criteria and were included in the meta-analysis. 18F-FDG PET/MRI had a pooled sensitivity and specificity of 96% (95% CI: 84, 99) and 100% (95% CI: 98, 100), respectively. 18F-FDG PET/CT had a pooled sensitivity and specificity of 99% (95% CI: 61, 100) and 99% (95% CI: 94, 100), respectively, which were comparable with those of 18F-FDG PET/MRI. At meta-regression, studies in which contrast media (P = .03) and diffusion-weighted imaging (P = .04) were used as a part of a pulmonary 18F-FDG PET/MRI protocol showed significantly higher sensitivities. Conclusion Fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI was found to be accurate and comparable with 18F-FDG PET/CT in the detection of malignant pulmonary lesions, with significantly improved sensitivity when advanced acquisition protocols were used. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Ur Metser
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Adriano Basso Dias
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Claudia Ortega
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Jonathan Yeung
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|
8
|
Virarkar M, Vulasala SS, Calimano-Ramirez L, Singh A, Lall C, Bhosale P. Current Update on PET/MRI in Gynecological Malignancies-A Review of the Literature. Curr Oncol 2023; 30:1077-1105. [PMID: 36661732 PMCID: PMC9858166 DOI: 10.3390/curroncol30010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Early detection of gynecological malignancies is vital for patient management and prolonging the patient's survival. Molecular imaging, such as positron emission tomography (PET)/computed tomography, has been increasingly utilized in gynecological malignancies. PET/magnetic resonance imaging (MRI) enables the assessment of gynecological malignancies by combining the metabolic information of PET with the anatomical and functional information from MRI. This article will review the updated applications of PET/MRI in gynecological malignancies.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Sai Swarupa Vulasala
- Department of Internal Medicine, East Carolina University Health Medical Center, 600 Moye Blvd., Greenville, NC 27834, USA
| | - Luis Calimano-Ramirez
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Anmol Singh
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Chandana Lall
- Department of Diagnostic Radiology, University of Florida College of Medicine, 655 West 8th Street, C90, 2nd Floor, Clinical Center, Jacksonville, FL 32209, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
9
|
Mufti MA, Matthews R, Madu E, Yaddanapudi K, Franceschi D. “Low Dose MR” Dixon Technique for Imaging FDG PET-MR Lymphoma. World J Nucl Med 2022; 21:99-105. [PMID: 35865157 PMCID: PMC9296239 DOI: 10.1055/s-0042-1750330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction
Hybrid PET-MR is a relatively new imaging modality with its major strength being the MR component offering superior soft tissue contrast. While PET/MRI offers the inherent advantage of reduced radiation dose, it has been shown to result in a markedly prolonged examination time becoming a challenge in children and sick patients. "Low dose MRI" is a term used in the nuclear medicine community to describe fast acquired PET-MR scan protocols that rely heavily on PET images for diagnosis. In this study, we sought to determine if the Dixon sequences obtained for attenuation correction could be used as a diagnostic sequence for interpreting PET-MRI lymphoma cases, potentially reducing scan time.
Materials and Methods
We retrospectively identified 40 patients who underwent
88
FDG PET-MR body imaging studies for staging or restaging lymphoma. A radiologist and nuclear medicine physician initially reviewed top of the head to mid thigh PET images, attenuation correction coronal Dixon MRI sequences, and PET-MR fusion with Dixon sequence. The same physicians reviewed the PET images, multi-sequence MR including the attenuation correction Dixon, and multi-sequence PET-MR fusion images The lesions were further characterized based on their imaging characteristics, size, SUVmax, and malignant potency. A consensus read followed.
Results
All patients were adults with an average study age of 43.8 years. Our study consisted of 40 females and 48 males out of which 7 were for staging and 81 were for re-staging. All patients had systemic lymphoma. Thirty-seven of the studies had active lymph nodes on Dixon PET-MR that agreed with multi-sequence PET-MR which identified 33 positive cases (89.1%) having an average SUV 10.2 ± 7.74 SD. Four Dixon PET-MR cases did not detect lesions, with an average SUV 2.3 ± 0.55 SD, which was read as minimal residual activity. Multi-sequence MR identified 11 patients with enlarged lymph nodes without FDG uptake, which were not seen on Dixon MR. All 5 studies with bones lesions were detected by Dixon PET-MR as well as 2 soft tissue organ lesions. Multi-sequence MR identified 1 patient with non-active, healed bone lesion. Fifty-five of these studies were true negatives. Compared to multi-sequence PET-MR, Dixon PET-MR demonstrated 89.2% sensitivity, 100% specificity with no false positive studies.
Conclusion
The present study investigated the diagnostic potential of a fast protocol for integrated PET/MRI used for dedicated tumor staging of patients with lymphoma. In this retrospective study, Dixon PET-MR was shown to be sensitive and specific compared to multi-sequence PET-MR in the detection of lymphoma. The low number of these cases not detected had minimally active lymph nodes that resolved on subsequent imaging and probably were not clinically important.
Collapse
Affiliation(s)
- Musa Ali Mufti
- Department of Radiology, Stonybrook University Hospital, New York, New York, United States
| | - Robert Matthews
- Department of Nuclear Medicine, Stony Brook University Hospital, New York, New York, United States
| | - Ezemonye Madu
- School of Medicine, Hofstra/Northwell, New York, New York, United States
| | - Kavitha Yaddanapudi
- Department of Medical Imaging, College of Medicine, Tucson, Arizona, United States
| | - Dinko Franceschi
- Department of Nuclear Medicine, Stony Brook University Hospital, New York, New York, United States
| |
Collapse
|
10
|
|
11
|
Min LA, Castagnoli F, Vogel WV, Vellenga JP, van Griethuysen JJM, Lahaye MJ, Maas M, Beets Tan RGH, Lambregts DMJ. A decade of multi-modality PET and MR imaging in abdominal oncology. Br J Radiol 2021; 94:20201351. [PMID: 34387508 PMCID: PMC9328040 DOI: 10.1259/bjr.20201351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To investigate trends observed in a decade of published research on multimodality PET(/CT)+MR imaging in abdominal oncology, and to explore how these trends are reflected by the use of multimodality imaging performed at our institution. METHODS First, we performed a literature search (2009-2018) including all papers published on the multimodality combination of PET(/CT) and MRI in abdominal oncology. Retrieved papers were categorized according to a structured labelling system, including study design and outcome, cancer and lesion type under investigation and PET-tracer type. Results were analysed using descriptive statistics and evolutions over time were plotted graphically. Second, we performed a descriptive analysis of the numbers of MRI, PET/CT and multimodality PET/CT+MRI combinations (performed within a ≤14 days interval) performed during a similar time span at our institution. RESULTS Published research papers involving multimodality PET(/CT)+MRI combinations showed an impressive increase in numbers, both for retrospective combinations of PET/CT and MRI, as well as hybrid PET/MRI. Main areas of research included new PET-tracers, visual PET(/CT)+MRI assessment for staging, and (semi-)quantitative analysis of PET-parameters compared to or combined with MRI-parameters as predictive biomarkers. In line with literature, we also observed a vast increase in numbers of multimodality PET/CT+MRI imaging in our institutional data. CONCLUSIONS The tremendous increase in published literature on multimodality imaging, reflected by our institutional data, shows the continuously growing interest in comprehensive multivariable imaging evaluations to guide oncological practice. ADVANCES IN KNOWLEDGE The role of multimodality imaging in oncology is rapidly evolving. This paper summarizes the main applications and recent developments in multimodality imaging, with a specific focus on the combination of PET+MRI in abdominal oncology.
Collapse
Affiliation(s)
- Lisa A Min
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Wouter V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jisk P Vellenga
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joost J M van Griethuysen
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Max J Lahaye
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina G H Beets Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands.,Faculty or Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Hosono M, Takenaka M, Monzen H, Tamura M, Kudo M, Nishimura Y. Cumulative radiation doses from recurrent PET/CT examinations. Br J Radiol 2021; 94:20210388. [PMID: 34111964 PMCID: PMC9328066 DOI: 10.1259/bjr.20210388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Positron emission tomography (PET–CT) is an essential imaging modality for the management of various diseases. Increasing numbers of PET–CT examinations are carried out across the world and deliver benefits to patients; however, there are concerns about the cumulative radiation doses from these examinations in patients. Compared to the radiation exposure delivered by CT, there have been few reports on the frequency of patients with a cumulative effective radiation dose of ≥100 mSv from repeated PET–CT examinations. The emerging dose tracking system facilitates surveys on patient cumulative doses by PET–CT because it can easily wrap up exposure doses of PET radiopharmaceuticals and CT. Regardless of the use of a dose tracking system, implementation of justification for PET–CT examinations and utilisation of dose reduction measures are key issues in coping with the cumulative dose in patients. Despite all the advantages of PET/MRI such as eliminating radiation exposure from CT and providing good tissue contrast in MRI, it is expensive and cannot be introduced at every facility; thus, it is still necessary to utilise PET–CT with radiation reduction measures in most clinical situations.
Collapse
Affiliation(s)
- Makoto Hosono
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Hajime Monzen
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mikoto Tamura
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
13
|
Diagnostic performance of PET/CT and PET/MR in the management of ovarian carcinoma-a literature review. Abdom Radiol (NY) 2021; 46:2323-2349. [PMID: 33175199 DOI: 10.1007/s00261-020-02847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a challenging disease. It often presents at an advanced stage with frequent recurrence despite optimal management. Accurate staging and restaging are critical for improving treatment outcomes and determining the prognosis. Imaging is an indispensable component of ovarian cancer management. Hybrid imaging modalities, including positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (MRI), are emerging as potential non-invasive imaging tools for improved management of ovarian cancer. This review article discusses the role of PET/CT and PET/MRI in ovarian cancer.
Collapse
|
14
|
Ward RD, Amorim B, Li W, King J, Umutlu L, Groshar D, Harisinghani M, Catalano O. Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications. Abdom Radiol (NY) 2021; 46:1236-1248. [PMID: 32949272 DOI: 10.1007/s00261-020-02766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging (MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.
Collapse
Affiliation(s)
- Ryan D Ward
- Cleveland Clinic, Department of Abdominal Imaging, 9500 Euclid Ave, L10, Cleveland, OH, 44195, USA
| | - Barbara Amorim
- Division of Nuclear Medicine, University of Campinas, Rua Vital Brasil 251, Campinas, Brazil
| | - Weier Li
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Joseph King
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - David Groshar
- Assuta Medical Center, Habrzel 20, 6971028, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv, Israel
| | - Mukesh Harisinghani
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio Catalano
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Steiner A, Narva S, Rinta-Kiikka I, Hietanen S, Hynninen J, Virtanen J. Diagnostic efficiency of whole-body 18F-FDG PET/MRI, MRI alone, and SUV and ADC values in staging of primary uterine cervical cancer. Cancer Imaging 2021; 21:16. [PMID: 33482909 PMCID: PMC7821517 DOI: 10.1186/s40644-020-00372-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background The use of PET/MRI for gynecological cancers is emerging. The purpose of this study was to assess the additional diagnostic value of PET over MRI alone in local and whole-body staging of cervical cancer, and to evaluate the benefit of standardized uptake value (SUV) and apparent diffusion coefficient (ADC) in staging. Methods Patients with histopathologically-proven cervical cancer and whole-body 18F-FDG PET/MRI obtained before definitive treatment were retrospectively registered. Local tumor spread, nodal involvement, and distant metastases were evaluated using PET/MRI or MRI dataset alone. Histopathology or clinical consensus with follow-up imaging were used as reference standard. Tumor SUVmax and ADC were measured and SUVmax/ADC ratio calculated. Area under the curve (AUC) was determined to predict diagnostic performance and Mann-Whitney U test was applied for group comparisons. Results In total, 33 patients who underwent surgery (n = 23) or first-line chemoradiation (n = 10) were included. PET/MRI resulted in higher AUC compared with MRI alone in detecting parametrial (0.89 versus 0.73), vaginal (0.85 versus 0.74), and deep cervical stromal invasion (0.96 versus 0.74), respectively. PET/MRI had higher diagnostic confidence than MRI in identifying patients with radical cone biopsy and no residual at hysterectomy (sensitivity 89% versus 44%). PET/MRI and MRI showed equal AUC for pelvic nodal staging (both 0.73), whereas AUC for distant metastases was higher using PET/MRI (0.80 versus 0.67). Tumor SUVmax/ADC ratio, but not SUVmax or ADC alone, was significantly higher in the presence of metastatic pelvic lymph nodes (P < 0.05). Conclusions PET/MRI shows higher accuracy than MRI alone for determining local tumor spread and distant metastasis emphasizing the added value of PET over MRI alone in staging of cervical cancer. Tumor SUVmax/ADC ratio may predict pelvic nodal involvement. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-020-00372-5.
Collapse
Affiliation(s)
- Aida Steiner
- Department of Radiology, Turku University Hospital and University of Turku, PO Box 52, 20521, Turku, Finland. .,Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Sara Narva
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Irina Rinta-Kiikka
- Department of Radiology, Tampere University Hospital, PO Box 2000, 33521, Tampere, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Johanna Virtanen
- Department of Radiology, Turku University Hospital and University of Turku, PO Box 52, 20521, Turku, Finland
| |
Collapse
|
16
|
Reinhold C, Ueno Y, Akin EA, Bhosale PR, Dudiak KM, Jhingran A, Kang SK, Kilcoyne A, Lakhman Y, Nicola R, Pandharipande PV, Paspulati R, Shinagare AB, Small W, Vargas HA, Whitcomb BP, Glanc P. ACR Appropriateness Criteria® Pretreatment Evaluation and Follow-Up of Endometrial Cancer. J Am Coll Radiol 2020; 17:S472-S486. [PMID: 33153558 DOI: 10.1016/j.jacr.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022]
Abstract
To date, there is little consensus on the role of pelvic imaging in assessing local disease extent during initial staging in patients with endometrial carcinoma, with practices differing widely across centers. However, when pretreatment assessment of local tumor extent is indicated, MRI is the preferred imaging modality. Preoperative imaging of endometrial carcinoma can define the extent of disease and indicate the need for subspecialist referral in the presence of deep myometrial invasion, cervical extension, or suspected lymphadenopathy. If distant metastatic disease is clinically suspected, preoperative assessment with cross-sectional imaging or PET/CT may be performed. However, most patients with low-grade disease are at low risk of lymph node and distant metastases. Thus, this group may not require a routine pretreatment evaluation for distant metastases. Recurrence rates in patients with endometrial carcinoma are infrequent. Therefore, radiologic evaluation is typically used only to investigate suspicion of recurrent disease due to symptoms or physical examination and not for routine surveillance after treatment. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Yoshiko Ueno
- Research Author, Kobe University Graduate School of Medicine, Kobe, Japan, McGill University, Montreal, Quebec, Canada
| | - Esma A Akin
- George Washington University Hospital, Washington, District of Columbia
| | | | | | - Anuja Jhingran
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stella K Kang
- New York University Medical Center, New York, New York
| | | | - Yulia Lakhman
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Refky Nicola
- Roswell Park Cancer Institute, Jacobs School of Medicine and Biomedical Science, Buffalo, New York
| | | | - Rajmohan Paspulati
- University Hospitals Medical Group Radiology, Cleveland, Ohio, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Atul B Shinagare
- Brigham & Women's Hospital Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William Small
- Stritch School of Medicine Loyola University Chicago, Maywood, Illinois
| | | | - Bradford P Whitcomb
- University of Connecticut, Farmington, Connecticut; Society of Gynecologic Oncology
| | - Phyllis Glanc
- Specialty Chair, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Nguyen NC, Beriwal S, Moon CH, D'Ardenne N, Mountz JM, Furlan A, Muthukrishnan A, Rangaswamy B. Diagnostic Value of FDG PET/MRI in Females With Pelvic Malignancy-A Systematic Review of the Literature. Front Oncol 2020; 10:519440. [PMID: 33123460 PMCID: PMC7571667 DOI: 10.3389/fonc.2020.519440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Hybrid imaging with F-18 fludeoxyglucose positron emission tomography/magnetic resonance imaging (FDG PET/MRI) has increasing clinical applications supplementing conventional ultrasound, CT, and MRI imaging as well as hybrid PET/CT imaging in assessing cervical, endometrial, and ovarian cancer. This article summarizes the existing literature and discusses the emerging role of hybrid PET/MRI in gynecologic malignancies. Thus, far, the published literature on the applications of FDG PET/MRI shows that it can have a significant impact on patient management by improving the staging of the cancers compared with PET/CT, influencing clinical decision and treatment strategy. For disease restaging, current literature indicates that PET/MRI performs equivalently to PET/CT. There appears to be a mild-moderate inverse correlation between standard-uptake-value (SUV) and apparent-diffusion-coefficient (ADC) values, which could be used to predict tumor grading and risk stratification. It remains to be seen as to whether multi-parametric PET/MRI imaging could prove valuable for prognostication and outcome. PET/MRI provides the opportunity for reduced radiation exposure, which is particularly relevant for a young female in need of multiple scans for treatment monitoring and follow-up. Fast acquisition protocols and optimized methods for attenuation correction are still evolving. Major limitations of PET/MRI remains such as suboptimal detection of small pulmonary nodules and lack of utility for radiation treatment planning, which pose an impediment in making PET/MRI a viable one-stop-shop imaging option to compete with PET/CT.
Collapse
Affiliation(s)
- Nghi Co Nguyen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sushil Beriwal
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chan-Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas D'Ardenne
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashok Muthukrishnan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
18
|
Abstract
Oncologic imaging has been a major focus of clinical research on PET/MR over the last 10 years. Studies so far have shown that PET/MR with 18F-Fluorodeoxyglucose (FDG) overall provides a similar accuracy for tumor staging as FDG PET/CT. The effective radiation dose of whole-body FDG PET/MR is more than 50% lower than for FDG PET/CT, making PET/MR particularly attractive for imaging of children. However, the longer acquisition times and higher costs have so far limited broader clinical use of PET/MR technology for whole-body staging. With the currently available technology, PET/MR appears more promising for locoregional staging of diseases for which MR is the anatomical imaging modality of choice. These include brain tumors, head and neck cancers, gynecologic malignancies, and prostate cancer. For instance, PET imaging with ligands of prostate-specific membrane antigen, combined with multi-parametric MR, appears promising for detection of prostate cancer and differentiation from benign prostate pathologies as well as for detection of local recurrences. The combination of functional parameters from MR, such as apparent diffusion coefficients, and molecular parameters from PET, such as receptor densities or metabolic rates, is feasible in clinical studies, but clinical applications for this multimodal and multi-parametric imaging approach still need to be defined.
Collapse
|
19
|
PET/MRI in breast cancer patients: Added value, barriers to implementation, and solutions. Clin Imaging 2020; 68:24-28. [PMID: 32562923 DOI: 10.1016/j.clinimag.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
|
20
|
Li Y, Langhorst J, Koch AK, Demircioglu A, Schaarschmidt B, Theysohn JM, Martin O, Herrmann K, Catalano O, Umutlu L. Comparison of acceptance of PET/MR enterography and ileocolonoscopy in patients with inflammatory bowel diseases. Clin Imaging 2020; 64:11-17. [PMID: 32200275 DOI: 10.1016/j.clinimag.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to compare PET/MR enterography with ileocolonoscopy regarding patients' acceptance and their future preference. METHODS Between October 2014 and February 2018 one-hundred-eleven patients underwent PET/MR enterography and ileocolonoscopy within 2 weeks. Overall acceptance of each modality was rated using a 10-point Likert scale with higher score indicating worse experience. Wilcoxon test was used to assess difference. Patients' acceptance of bowel cleansing and oral intake of contrast agent was analyzed in the same way. Furthermore, to find out if diagnosis, gender and age might influence patients' acceptance and future preference, Mann-Whitney U test for ordinal and Chi-squared test for categorical parameters were applied. RESULTS 77 patients (47 females) with a mean age of 44.5 years and diagnosed ulcerative colitis (UC; n = 46) and Crohn's disease (CD; n = 31), were included in the analysis. Overall, ileocolonoscopy was significantly better rated than PET/MR enterography (p < 0.001). Bowel cleansing was worse tolerated than oral intake of liquid (p < 0.001). Patients with CD preferred PET/MR enterography as future screening method, while UC patients favored ileocolonoscopy (p = 0.012). PET/MR enterography tended to be better accepted by CD patients (p = 0.08). Females tolerated both bowel cleansing and oral contrast agent worse than males (p = 0.05 and 0.047). No significant difference between different age groups was found. CONCLUSIONS Ileocolonoscopy was rated as better tolerable than PET/MR and the overall rate for future preference was very similar. Optimization of both modalities might enhance patients' acceptance.
Collapse
Affiliation(s)
- Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Am Deimelsberg 34a, 45276 Essen, Germany
| | - Anna K Koch
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Am Deimelsberg 34a, 45276 Essen, Germany
| | - Aydin Demircioglu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Benedikt Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jens M Theysohn
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ole Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Dusseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Onofrio Catalano
- Abdominal Imaging and Martinos Center for Biomedical Imaging Research, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
21
|
Virarkar M, Ganeshan D, Devine C, Bassett R, Kuchana V, Bhosale P. Diagnostic value of PET/CT versus PET/MRI in gynecological malignancies of the pelvis: A meta-analysis. Clin Imaging 2020; 60:53-61. [DOI: 10.1016/j.clinimag.2019.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
|
22
|
Update on Diagnostic Performance of PET/MRI in Gynecological Malignancies: A Systematic Review and Meta-Analysis. J Belg Soc Radiol 2020; 104:4. [PMID: 31998862 PMCID: PMC6978989 DOI: 10.5334/jbsr.1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Objective: The aim of this study was to assess the diagnostic performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) for gynecological cancers of the pelvis based on a systematic review and meta-analysis of published data. Patients and Methods: A systematic literature search for original diagnostic studies was performed using PubMed/MEDLINE, the Cochrane Library, Embase and Web of Science. The methodological quality of each study was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Data necessary for entry in 2 × 2 contingency tables were obtained, and patients, study, and imaging characteristics were extracted from the selected articles. Statistical analysis included data pooling, heterogeneity testing, sensitivity analyses, forest plotting, and summary receiver operating characteristic curve construction. Result: Twelve studies met our predefined inclusion criteria and were included in this study. Patient-based analysis, the pooled sensitivity rate, specificity rate, diagnostic odds ratio, and area under the receiver operating characteristic curve for 18F-FDG PET/MRI in diagnosis of gynecological malignancies were 74.2% (95% confidence interval, 66.2–80.8%), 89.8% (95% CI, 82.2–94.3%), 26 (95% CI, 10–67), and 0.834, respectively. On lesion-based analysis, the pooled sensitivity rate, specificity rate, diagnostic odds ratio, and area under the curve were 87.5% (95% CI, 75.8–94.0%), 88.2% (95% CI, 84.2–91.3%), 50 (95% CI, 23–111), and 0.922, respectively. Conclusions: Our meta-analysis demonstrated that 18F-FDG PET/MRI is a promising diagnostic method for primary tumors, nodal staging, and recurrence in patients with gynecological malignancies of the pelvis.
Collapse
|
23
|
Abstract
High-quality imaging diagnostics play a fundamental role in patient and therapy management of cancers of the female pelvis. Magnetic resonance imaging (MRI) and positron emission tomography (PET) represent two important imaging modalities, which are frequently applied for primary tumor evaluation, therapy monitoring, and assessment of potential tumor relapse. Based on its high soft-tissue contrast, MRI has been shown superior toward CT for the determination of the local extent of primary tumors and for the differentiation between post-therapeutic changes and tumor relapse. Molecular imaging utilizing 18F-fluorodeoxyglucose (18F-FDG) PET facilitates an insight into tumor metabolism depending on the glycolytic activity of tumorous cells. As the current gold standard of hybrid imaging, 18F-FDG-PET/CT has been demonstrated highly accurate and superior to conventional imaging modalities for the detection of tumorous tissue due to the combined analysis of metabolic and morphologic data. Therefore, 18F-FDG-PET has emerged to become a well-established imaging modality for the detection, re-/staging and therapy response monitoring of a variety of solid tumors, including gynecologic cancers. Integrated PET/MRI systems have been successfully introduced into scientific and clinical applications within the past 8 years. This new-generation hybrid imaging technology enables the simultaneous acquisition of PET- and MR Datasets, providing complementary metabolic, functional, and morphologic information of tumorous tissue. Combining the high soft-tissue contrast of MRI and the metabolic information derived from PET, PET/MRI bears the potential to be utilized as an accurate and efficient diagnostic tool for primary tumor staging, therapy monitoring and restaging of tumors of the female pelvis and plays a valuable role in the management of targeted tumor therapies in the future.
Collapse
Affiliation(s)
- Lale Umutlu
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany.
| | - Gerald Antoch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany
| | - Ken Herrmann
- University Hospital Essen, Department of Nuclear Medicine, Essen, Germany
| | - Johannes Grueneisen
- University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany
| |
Collapse
|
24
|
Morsing A, Hildebrandt MG, Vilstrup MH, Wallenius SE, Gerke O, Petersen H, Johansen A, Andersen TL, Høilund-Carlsen PF. Hybrid PET/MRI in major cancers: a scoping review. Eur J Nucl Med Mol Imaging 2019; 46:2138-2151. [PMID: 31267161 DOI: 10.1007/s00259-019-04402-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE PET/MRI was introduced for clinical use in 2011 and is now an established modality for the imaging of brain and certain pelvic cancers, whereas clinical use for the imaging of other forms of cancer is not yet widespread. We therefore systematically investigated what has been published on the use of PET/MRI compared to PET/CT in the imaging of cancers outside the brain, focusing on clinical areas of application related to diagnosis, staging and restaging. METHODS A systematic search of PubMed/MEDLINE, Embase and the Cochrane Library was performed. Studies evaluating the diagnostic performance of simultaneous PET/MRI in cancer patients were chosen. RESULTS A total of 3,138 publications were identified and 116 published during the period 2012-2018 were included and were grouped according to the major cancer forms: 13 head and neck (HNC), 9 breast (BC), 21 prostate (PC), 14 gynaecological, 13 gastrointestinal (GIC), and 46 various cancers. Data from studies comparing PET/MRI and PET/CT for staging/restaging suggested the superiority of 18F-FDG PET/MRI for the detection of tumour extension and retropharyngeal lymph node metastases in nasopharyngeal cancer, and for the detection of liver metastases and possibly bone marrow metastases in high-risk BC. FDG PET/MRI tended to be inferior for the detection of lung metastases in HNC and BC. 68Ga-PSMA-11 PET/MRI was superior to PET/CT for the detection of local PC recurrence. FDG PET/MRI was superior to FDG PET/CT for the detection of local tumour invasion in cervical cancer and had higher accuracy for the detection of liver metastases in colorectal cancer. CONCLUSION The scoping review methodology resulted in the identification of a huge number of records, of which less than 5% were suitable for inclusion and only a limited number allowed conclusions on the advantages/disadvantages of PET/MRI compared to PET/CT in the oncological setting. There was evidence to support the use of FDG PET/MRI in staging of nasopharyngeal cancer and high-risk BC. Preliminary data indicate the superiority of PET/MRI for the detection of local recurrence in PC, local tumour invasion in cervical cancer, and liver metastases in colorectal cancer. These conclusions are based on small datasets and need to be further explored.
Collapse
Affiliation(s)
- Anni Morsing
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark.
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Innovative Medical Technology (CIMT), Odense University Hospital, Odense, Denmark
| | - Mie Holm Vilstrup
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Allan Johansen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Thomas Lund Andersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Kong TW, Ryu HS, Kim SC, Enomoto T, Li J, Kim KH, Shim SH, Wang PH, Therasakvichya S, Kobayashi Y, Lee M, Shi T, Lee SW, Mikami M, Nagase S, Lim MC, Wang J, Wilailak S, Kim SW, Hong SH, Tan DS, Mandai M, Chang SJ, Huang RYJ, Ushijima K, Lee JY, Chen X, Ochiai K, Lee TS, Yang B, Kalam F, Lv Q, Ahmad MF, Yaznil MR, Modi KB, Manopunya M, Jeong DH, Lertkhachonsuk AA, Chung HH, Watari H, Jeon S. Asian Society of Gynecologic Oncology International Workshop 2018. J Gynecol Oncol 2019; 30:e39. [PMID: 30740961 PMCID: PMC6393643 DOI: 10.3802/jgo.2019.30.e39] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
The Asian Society of Gynecologic Oncology International Workshop 2018 on gynecologic oncology was held in the Ajou University Hospital, Suwon, Korea on the 24th to 25th August 2018. The workshop was an opportunity for Asian doctors to discuss the latest findings of gynecologic cancer, including cervical, ovarian, and endometrial cancers, as well as the future of fertility-sparing treatments, minimally invasive/radical/debulking surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Clinical guidelines and position statement of Asian countries were presented by experts. Asian clinical trials for gynecologic cancers were reviewed and experts emphasized the point that original Asian study is beneficial for Asian patients. In Junior session, young gynecologic oncologists presented their latest research on gynecologic cancers.
Collapse
Affiliation(s)
- Tae Wook Kong
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | - Hee Sug Ryu
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea.
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kenneth H Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seung Hyuk Shim
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Peng Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Suwanit Therasakvichya
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Tingyan Shi
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shin Wha Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University, Kanagawa, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Myong Cheol Lim
- Cancer Healthcare Research Branch, Center for Uterine Cancer, and Center for Clinical Trials, Research Institute and Hospital, Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Sarikapan Wilailak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sang Wun Kim
- Institute of Women's Life Medical Science, Women's Cancer Center, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Sook Hee Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - David Sp Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, and The Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Suk Joon Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Jung Yun Lee
- Institute of Women's Life Medical Science, Women's Cancer Center, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Kazunori Ochiai
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Taek Sang Lee
- Department of Obstetrics and Gynecology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bingyi Yang
- Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Farhana Kalam
- National Institute of Cancer Research and Hospital, Mohakhali, Dhaka, Bangladesh
| | - Qiaoying Lv
- Department of Gynecology, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Muhammad Rizki Yaznil
- Gynecoogic Oncology Division, Obstetrics and Gynecologic Department, H. Adam Malik General Hospital - Universitas Sumatera Utara, Medan, Indonesia
| | | | - Manatsawee Manopunya
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dae Hoon Jeong
- Busan Paik Hospital, Paik Institute for Clinical Research, Inje University, Busan, Korea
| | - Arb Aroon Lertkhachonsuk
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Hidemichi Watari
- Department of Obstetrics and Gynaecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Seob Jeon
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
26
|
Towards fast whole-body PET/MR: Investigation of PET image quality versus reduced PET acquisition times. PLoS One 2018; 13:e0206573. [PMID: 30376583 PMCID: PMC6207312 DOI: 10.1371/journal.pone.0206573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose The trend towards faster acquisition protocols in whole-body positron emission tomography/magnetic resonance (PET/MR) arises the question of whether short PET data acquisition protocols in a whole-body multi-station context allow for reduced PET acquisition times while providing adequate PET image quality and accurate quantification parameters. The study goal is to investigate how reducing PET acquisition times affects PET image quality and quantification in whole-body PET/MR in patients with oncologic findings. Methods Fifty-one patients with different oncologic findings underwent a clinical whole-body 18F-Fluorodeoxyglucose PET/MR examination. PET data was reconstructed with 4, 3, 2, and 1 min/bed time intervals for each patient to simulate the effect of reduced PET acquisition times. The 4-minute PET reconstructions served as reference standard. All whole-body PET data sets were analyzed regarding image quality, lesion detectability, PET quantification and standardized uptake values. Results A total of 91 lesions were detected in the 4-minute PET reconstructions. The same number of congruent lesions was also noticed in the 3 and 2 minutes-per-bed (mpb) reconstructed images. A total of 2 lesions in 2 patients was not detected in the 1 minute PET data reconstructions due to poor image quality. Image noise in the blood pool increased from 22.2% (4 mpb) to 42.1% (1 mpb). Signal-to-noise ratio declined with shorter timeframes from 13.1 (4 mpb) to 9.3 (1 mpb). SUVmean and SUVmax showed no significant changes between 4 and 1 mpb reconstructed timeframes. Conclusions Reconstruction of PET data with different time intervals has shown that 2 minutes acquisition time per bed position instead of 4 minutes is sufficient to provide accurate lesion detection and adequate image quality in a clinical setting, despite the trends to lower image quality with shorter PET acquisition times. This provides latitude for potential reduction of PET acquisition times in fast PET/MR whole-body examinations.
Collapse
|
27
|
Diagnostic value of 18F-FDG PET/MRI in recurrent pelvis malignancies of female patients: a systematic review and meta-analysis. Nucl Med Commun 2018; 39:479-485. [PMID: 29634659 DOI: 10.1097/mnm.0000000000000839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to assess the diagnostic performance of fluorine-18-fluorodeoxyglucose (F-FDG) PET/MRI for suspected recurrence of pelvis malignancies of female patients using a meta-analysis. We performed a systematical literature search for relevant studies in PubMed, Cochrane Library, Google Scholar, and several Chinese databases. Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the quality of all included studies. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated per patient and per lesion. Summary receiver operating characteristic curves were also constructed. All procedures involving human participants in this study were performed in conformity with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments. Finally, seven articles comprising 257 patients and 695 lesions were included in this meta-analysis. On patient-based analysis, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of F-FDG PET/MRI in detecting recurrence of pelvis malignancies were 0.96 [95% confidence interval (CI): 0.93-0.99], 0.95 (95% CI: 0.87-0.99), 9.85 (95% CI: 4.62-21.00), 0.07 (95% CI: 0.04-0.13), and 201.41 (95% CI: 62.89-645.03), respectively. On lesion-based analysis, the corresponding estimates were 0.99 (95% CI: 0.97-1.00), 0.94 (95% CI: 0.89-0.97), 17.11 (95% CI: 4.46-65.60), 0.02 (95% CI: 0.01-0.05), and 1125.24 (95% CI: 211.46-5987.79), respectively. The results of our meta-analysis indicate that F-FDG PET/MRI has excellent diagnostic performance in restaging female patients with suspected recurrence of gynecological pelvic malignancies.
Collapse
|
28
|
|
29
|
Sawicki LM, Kirchner J, Grueneisen J, Ruhlmann V, Aktas B, Schaarschmidt BM, Forsting M, Herrmann K, Antoch G, Umutlu L. Comparison of 18F–FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study. Eur J Nucl Med Mol Imaging 2017; 45:622-629. [DOI: 10.1007/s00259-017-3881-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
|
30
|
Abstract
Gynecologic cancer is a heterogeneous group of diseases both functionally and morphologically. Today, PET coupled with computed tomography (PET/CT) or PET/MR imaging play a central role in the precision medicine algorithm of patients with gynecologic malignancy. In particular, PET/CT and PET/MR imaging are molecular imaging techniques that not only are useful tools for initial staging and restaging but provide anatomofunctional insight and can serve as predictive and prognostic biomarkers of response in patients with gynecologic malignancy.
Collapse
|