1
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
2
|
Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, Salviati A, Mariotti B, Botta A, D’Apice MR, Novelli G, Delledonne M, Rossato M. Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture. Front Genet 2021; 12:743230. [PMID: 34646309 PMCID: PMC8504923 DOI: 10.3389/fgene.2021.743230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.
Collapse
Affiliation(s)
- Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Salviati
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
- IRCCS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| |
Collapse
|
3
|
Sihombing NRB, Winarni TI, Utari A, van Bokhoven H, Hagerman RJ, Faradz SMH. Surveillance and prevalence of fragile X syndrome in Indonesia. Intractable Rare Dis Res 2021; 10:11-16. [PMID: 33614370 PMCID: PMC7882090 DOI: 10.5582/irdr.2020.03101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of intellectual disability (ID) and autism spectrum disorder (ASD). Many studies have been conducted over the years, however, in Indonesia there is relatively less knowledge on the prevalence of FXS. We reviewed all studies involving FXS screening and cascade testing of the high-risk population in Indonesia for two decades, to elucidate the prevalence, as well as explore the presence of genetic clusters of FXS in Indonesia. The prevalence of FXS in the ID population of Indonesia ranged between 0.9-1.9%, while in the ASD population, the percentage was higher (6.15%). A screening and cascade testing conducted in a small village on Java Island showed a high prevalence of 45% in the ID population, suggesting a genetic cluster. The common ancestry of all affected individuals was suggestive of a founder effect in the region. Routine screening and subsequent cascade testing are essential, especially in cases of ID and ASD of unknown etiology in Indonesia.
Collapse
Affiliation(s)
- Nydia Rena Benita Sihombing
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Tri Indah Winarni
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Agustini Utari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
- Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Randi J Hagerman
- MIND Institute, UC Davis Health, University of California, Davis, California, USA
| | - Sultana MH Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
- Address correspondence to:Sultana MH Faradz, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Jl. Prof. Soedarto SH no. 1, Semarang (50275), Central-Java, Indonesia. E-mail:
| |
Collapse
|
4
|
Asefifeyzabadi N, Alkhaldi R, Qamar AZ, Pater AA, Patwardhan M, Gagnon KT, Talapatra S, Shamsi MH. Label-free Electrochemical Detection of CGG Repeats on Inkjet Printable 2D Layers of MoS 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52156-52165. [PMID: 33151065 DOI: 10.1021/acsami.0c14912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible and ultrasensitive biosensing platforms capable of detecting a large number of trinucleotide repeats (TNRs) are crucial for future technology development needed to combat a variety of genetic disorders. For example, trinucleotide CGG repeat expansions in the FMR1 gene can cause Fragile X syndrome (FXS) and Fragile X-associated tremor/ataxia syndrome (FXTAS). Current state-of-the-art technologies to detect repeat sequences are expensive, while relying on complicated procedures, and prone to false negatives. We reasoned that two-dimensional (2D) molybdenum sulfide (MoS2) surfaces may be useful for label-free electrochemical detection of CGG repeats due to its high affinity for guanine bases. Here, we developed a low-cost and sensitive wax-on-plastic electrochemical sensor using 2D MoS2 ink for the detection of CGG repeats. The ink containing few-layered MoS2 nanosheets was prepared and characterized using optical, electrical, electrochemical, and electron microscopic methods. The devices were characterized by electron microscopic and electrochemical methods. Repetitive CGG DNA was adsorbed on a MoS2 surface in a high cationic strength environment and the electrocatalytic current of the CGG/MoS2 interface was recorded using a soluble Fe(CN)6-3/-4 redox probe by differential pulse voltammetry (DPV). The dynamic range for the detection of prehybridized duplexes ranged from 1 aM to 100 nM with a 3.0 aM limit of detection. A detection range of 100 fM to 1 nM was recorded for surface hybridization events. Using this method, we were able to observe selectivity of MoS2 for CGG repeats and distinguish nonpathogenic from disease-associated repeat lengths. The detection of CGG repeat sequences on inkjet printable 2D MoS2 surfaces is a forward step toward developing chip-based rapid and label-free sensors for the detection of repeat expansion sequences.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Rana Alkhaldi
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ahmad Z Qamar
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Adrian A Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Meera Patwardhan
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan 62901, United States
| | - Keith T Gagnon
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Saikat Talapatra
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Mohtashim H Shamsi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
5
|
Sihombing NRB, Winarni TI, van Bokhoven H, van der Burgt I, de Leeuw N, Faradz SMH. Pathogenic variant in NFIX gene affecting three sisters due to paternal mosaicism. Am J Med Genet A 2020; 182:2731-2736. [PMID: 32945093 DOI: 10.1002/ajmg.a.61835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
Abstract
We present a family with three girls presenting similar dysmorphic features, including overgrowth, intellectual disability, macrocephaly, prominent forehead, midface retrusion, strabismus, and scoliosis. Both parents were unaffected, suggesting the presence of an autosomal recessive syndrome. Following exome sequencing, a heterozygous nonsense variant was identified in the NFIX gene in all three siblings. The father appeared to have a low-grade (7%) mosaicism for this variant in his blood. Previously, de novo pathogenic variants in NFIX have been identified in Marshall-Smith syndrome and Malan syndrome, which share distinctive phenotypic features shared with the patients of the present family. This case emphasizes the importance of further molecular analysis especially in familial cases, to exclude the possibility of parental mosaicism.
Collapse
Affiliation(s)
- Nydia Rena Benita Sihombing
- Doctoral Program of Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Tri Indah Winarni
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ineke van der Burgt
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sultana M H Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
6
|
Ramos C, Ocampos M, Barbato IT, Graça Bicalho MD, Nisihara R. Molecular analysis of FMR1 gene in a population in Southern Brazil: Comparison of four methods. Pract Lab Med 2020; 21:e00162. [PMID: 32426440 PMCID: PMC7225725 DOI: 10.1016/j.plabm.2020.e00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/01/2022] Open
Abstract
Objectives Fragile X syndrome (FXS) is caused by expansion of the number of cytosine-guanine-guanine (CGG) repeats in the regulatory region of the gene fragile X mental retardation 1 (FMR1). The molecular diagnoses of FXS can be performed using two tests based on two different techniques, namely polymerase chain reaction (PCR) and Southern blotting (SB). However, both of these techniques have limitations. The purpose of this study was to evaluate the performance of the commercial FragilEase™ PCR kit for FXS diagnosis comparing to other laboratory methods. Design and methods: This study had a retrospective design. We analyzed the performance of the FragilEase™ PCR kit using 90 DNA samples from patients with clinical suspicion of FXS or a family history of the syndrome using capillary electrophoresis and compared with the results obtained for the same samples using PCR, SB, and AmplideX FMR1 PCR. Results FragilEase™ PCR kit displayed high concordance with the results obtained using PCR, SB, and AmplideX FMR1 PCR regarding the detection of normal, intermediate/gray zone, premutation, and full mutation alleles, as well as female homozygosity and mosaicism. The replicate sizes found using the FragilEase™ PCR assay varied on average by two CGG repeats. Conclusion FragilEase™ PCR, as well as other commercially available kits, efficiently detect FMR1 mutations and simplify the workflow in laboratories that performing FXS diagnoses. Southern Blot is the gold standard for FXS diagnosis, however, is a time-consuming method and requires a large amount of DNA. PCR determines the number of CGG repeats, however, it does not differentiate homozygous alleles in women. Commercial PCR-based kits aimed to simplify the workflow in FXS diagnosis with high accuracy.
Collapse
Affiliation(s)
- Cinthia Ramos
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maristela Ocampos
- Neurogene Laboratory of Human Citogenetics and Molecular Genetics, Florianópolis, Brazil
| | - Ingrid Tremel Barbato
- Neurogene Laboratory of Human Citogenetics and Molecular Genetics, Florianópolis, Brazil
| | - Maria da Graça Bicalho
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renato Nisihara
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Medicine, Positivo University, Curitiba, Paraná, Brazil
- Corresponding author.Department of Medicine, Positivo University, R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, 81280-330, Brazil.
| |
Collapse
|
7
|
Sihombing NRB, Cai S, Wong DPW, Guan M, Chong SSC, Faradz SMH, Winarni TI. Repeat expansion and methylation-sensitive triplet-primed polymerase chain reaction for fragile X mental retardation 1 gene screening in institutionalised intellectually disabled individuals. Singapore Med J 2020; 62:143-148. [PMID: 31989181 DOI: 10.11622/smedj.2020009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the most prevalent X-linked intellectual disability (ID) and a leading genetic cause of autism, characterised by cognitive and behavioural impairments. The hyperexpansion of a CGG repeat in the fragile X mental retardation 1 (FMR1) gene leads to abnormal hypermethylation, resulting in the lack or absence of its protein. Tools for establishing the diagnosis of FXS have been extensively developed, including assays based on triplet-primed polymerase chain reaction (TP-PCR) for detection and quantification of the CGG trinucleotide repeat expansion, as well as determination of the methylation status of the alleles. This study aimed to utilise a simple, quick and affordable method for high sensitivity and specificity screening and diagnosis of FXS in institutionalised individuals with ID. METHODS A total of 109 institutionalised individuals at the Center for Social Rehabilitation of Intellectual Disability Kartini, Temanggung, Central Java, Indonesia, were screened in a three-step process using FastFrax™ Identification, Sizing and Methylation Status Kits. RESULTS Two samples that were classified as indeterminate with respect to the 41-repeat control at the identification step were subsequently determined to be non-expanded by both sizing and methylation status analyses. Two samples classified as expanded at the identification step were determined to carry full mutation expansions > 200 repeats that were fully methylated using sizing and methylation status analyses, respectively, yielding a disease prevalence of 1.83%. CONCLUSION Repeat expansion and methylation-specific TP-PCR is practical, effective and inexpensive for the diagnosis of FXS, especially in high-risk populations of individuals with ID of undetermined aetiology.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Siong-Chuan Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
8
|
Juniarto AZ, Ariani MD, Harumsari S, Listyasari NA, Hardian H, Utari A, Faradz SMH. The use of high-resolution melting techniques for mutation screening of diseases caused by trinucleotide repeats expansion, with emphasis on the <em> AR </em> gene. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i2.3008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Trinucleotide repeat expansion (TRE) diseases are genetic diseases caused by an increase in the number of CAG, CGG, and CTG codons. CAG repeat expansion in exon 1 of the androgen receptor (AR) gene is known to be associated with disorders of sex development (DSD) and spinal and bulbar muscular atrophy (SBMA). Because the traditional Southern blot for CAG repeat expansion is laborious and time-consuming, this study was aimed to use high-resolution melting (HRM) analysis to screen the CAG repeat length of the AR gene in Indonesian patients with DSD.
METHODS In total, 30 male patients with DSD (46, XY), one male patient with SBMA, and 30 healthy males (control) were included in the study. The CAG repeat length was determined using HRM analysis, and Sanger sequencing was used to confirm the CAG repeat length.
RESULTS For the DSD cases and controls, the melting temperature (Tm) was within the normal range of 89–91.05°C; however, Tm was 92.65°C for the SBMA case. Sanger sequencing confirmed that DSD cases had 13–27 CAG repeats, and the SBMA case had 54 CAG repeats.
CONCLUSIONS HRM analysis using polymerase chain reaction is a sensitive, effective, and rapid technique for screening CAG repeat expansion in exon 1 of the AR gene. This is the first technique for AR gene screening that may be applicable to other TRE diseases.
Collapse
|
9
|
Leferink M, Wong DPW, Cai S, Yeo M, Ho J, Lian M, Kamsteeg EJ, Chong SS, Haer-Wigman L, Guan M. Robust and accurate detection and sizing of repeats within the DMPK gene using a novel TP-PCR test. Sci Rep 2019; 9:8280. [PMID: 31164682 PMCID: PMC6547747 DOI: 10.1038/s41598-019-44588-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 is a multisystem disorder caused by the expansion of a trinucleotide repeat in the DMPK gene. In this study we evaluated the performance of the FastDM1TMDMPK sizing kit in myotonic dystrophy type 1 testing. This commercially available triplet repeat-primed PCR based kit was validated using reference and clinical samples. Based on testing with 19 reference samples, the assay yielded repeat sizes within three repeats from the consensus reference length, demonstrating an accuracy of 100%. Additionally, the assay generated consistent repeat size information with a concentration range of template-DNA, and upon repetition and reproduction (CV 0.36% to 0.41%). Clinical performance was established with 235 archived prenatal and postnatal clinical samples, yielding results of 100% sensitivity (95% CI, 97.29% to 100%) and 100% specificity (95% CI, 96.19% to 100%) in classifying the samples into the respective genotype groups of 5–35 (normal), 36–50 (non-pathogenic pre-expansion), 51–150 (unstable intermediate-sized pathogenic) or >150 (unstable pathogenic) CTG repeats, respectively. Furthermore, the assay identified interrupted repeat expansions in all samples known to have interruptions, and also identified interruptions in a subset of the clinical samples.
Collapse
Affiliation(s)
- Maike Leferink
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Shiwei Cai
- The BioFactory Pte Ltd, Singapore, Republic of Singapore
| | - Minli Yeo
- The BioFactory Pte Ltd, Singapore, Republic of Singapore
| | - Jocelin Ho
- The BioFactory Pte Ltd, Singapore, Republic of Singapore
| | - Mulias Lian
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Republic of Singapore
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Samuel S Chong
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Republic of Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Republic of Singapore
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | - Ming Guan
- The BioFactory Pte Ltd, Singapore, Republic of Singapore
| |
Collapse
|
10
|
Hogan GJ, Vysotskaia VS, Beauchamp KA, Seisenberger S, Grauman PV, Haas KR, Hong SH, Jeon D, Kash S, Lai HH, Melroy LM, Theilmann MR, Chu CS, Iori K, Maguire JR, Evans EA, Haque IS, Mar-Heyming R, Kang HP, Muzzey D. Validation of an Expanded Carrier Screen that Optimizes Sensitivity via Full-Exon Sequencing and Panel-wide Copy Number Variant Identification. Clin Chem 2018; 64:1063-1073. [PMID: 29760218 DOI: 10.1373/clinchem.2018.286823] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/26/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND By identifying pathogenic variants across hundreds of genes, expanded carrier screening (ECS) enables prospective parents to assess the risk of transmitting an autosomal recessive or X-linked condition. Detection of at-risk couples depends on the number of conditions tested, the prevalence of the respective diseases, and the screen's analytical sensitivity for identifying disease-causing variants. Disease-level analytical sensitivity is often <100% in ECS tests because copy number variants (CNVs) are typically not interrogated because of their technical complexity. METHODS We present an analytical validation and preliminary clinical characterization of a 235-gene sequencing-based ECS with full coverage across coding regions, targeted assessment of pathogenic noncoding variants, panel-wide CNV calling, and specialized assays for technically challenging genes. Next-generation sequencing, customized bioinformatics, and expert manual call review were used to identify single-nucleotide variants, short insertions and deletions, and CNVs for all genes except FMR1 and those whose low disease incidence or high technical complexity precluded novel variant identification or interpretation. RESULTS Screening of 36859 patients' blood or saliva samples revealed the substantial impact on fetal disease-risk detection attributable to novel CNVs (9.19% of risk) and technically challenging conditions (20.2% of risk), such as congenital adrenal hyperplasia. Of the 7498 couples screened, 335 were identified as at risk for an affected pregnancy, underscoring the clinical importance of the test. Validation of our ECS demonstrated >99% analytical sensitivity and >99% analytical specificity. CONCLUSIONS Validated high-fidelity identification of different variant types-especially for diseases with complicated molecular genetics-maximizes at-risk couple detection.
Collapse
|