1
|
Laird JG, Kopel A, Lankford CK, Baker SA. Mouse all-cone retina models of Cav1.4 synaptopathy. Front Mol Neurosci 2023; 16:1155955. [PMID: 37181655 PMCID: PMC10174292 DOI: 10.3389/fnmol.2023.1155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The voltage-gated calcium channel, Cav1.4 is localized to photoreceptor ribbon synapses and functions both in molecular organization of the synapse and in regulating release of synaptic vesicles. Mutations in Cav1.4 subunits typically present as either incomplete congenital stationary night blindness or a progressive cone-rod dystrophy in humans. We developed a cone-rich mammalian model system to further study how different Cav1.4 mutations affect cones. RPE65 R91W KI; Nrl KO "Conefull" mice were crossed to Cav1.4 α1F or α2δ4 KO mice to generate the "Conefull:α1F KO" and "Conefull:α2δ4 KO" lines. Animals were assessed using a visually guided water maze, electroretinogram (ERG), optical coherence tomography (OCT), and histology. Mice of both sexes and up to six-months of age were used. Conefull: α1F KO mice could not navigate the visually guided water maze, had no b-wave in the ERG, and the developing all-cone outer nuclear layer reorganized into rosettes at the time of eye opening with degeneration progressing to 30% loss by 2-months of age. In comparison, the Conefull: α2δ4 KO mice successfully navigated the visually guided water maze, had a reduced amplitude b-wave ERG, and the development of the all-cone outer nuclear layer appeared normal although progressive degeneration with 10% loss by 2-months of age was observed. In summary, new disease models for studying congenital synaptic diseases due to loss of Cav1.4 function have been created.
Collapse
Affiliation(s)
| | | | | | - Sheila A. Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Camerino MJ, Engerbretson IJ, Fife PA, Reynolds NB, Berria MH, Doyle JR, Clemons MR, Gencarella MD, Borghuis BG, Fuerst PG. OFF bipolar cell density varies by subtype, eccentricity, and along the dorsal ventral axis in the mouse retina. J Comp Neurol 2021; 529:1911-1925. [PMID: 33135176 PMCID: PMC8009814 DOI: 10.1002/cne.25064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
The neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma. Normal variation in retinal distribution remains unreported for multiple cell types in widely used research models, including mouse. Here we map the distribution of all known OFF bipolar cell (BC) populations and horizontal cells. We report significant variation in the distribution of OFF BC populations and horizontal cells along the dorsal-ventral and central-peripheral axes of the retina. Distribution patterns are much more pronounced for some populations of OFF BC cells than others and may correspond to the cell type's specialized functions.
Collapse
Affiliation(s)
- Michael J Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ian J Engerbretson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Parker A Fife
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Nathan B Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mikel H Berria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jamie R Doyle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael D Gencarella
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisille, Kentuky, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| |
Collapse
|
3
|
Simmons AB, Camerino MJ, Clemons MR, Sukeena JM, Bloomsburg S, Borghuis BG, Fuerst PG. Increased density and age-related sharing of synapses at the cone to OFF bipolar cell synapse in the mouse retina. J Comp Neurol 2019; 528:1140-1156. [PMID: 31721194 DOI: 10.1002/cne.24810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022]
Abstract
Neural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement. Indeed, the majority of cones are contacted by single BC4 throughout development, but are contacted by multiple BC4s through ongoing dendritic elaboration between 1 and 6 months of age-well into maturity. We demonstrate that cell density drives contact patterns downstream of single cones in Bax null mice and may serve to maintain constancy in both the dendritic and axonal projective field.
Collapse
Affiliation(s)
- Aaron B Simmons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | | | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel Bloomsburg
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho
| |
Collapse
|