1
|
Mule SN, Alemán EV, Rosa-Fernandes L, Saad JS, de Oliveira GS, Martins D, Angeli CB, Brandt-Almeida D, Cortez M, Larsen MR, Shaw JJ, Teixeira MMG, Palmisano G. Leishmaniinae: Evolutionary inferences based on protein expression profiles (PhyloQuant) congruent with phylogenetic relationships among Leishmania, Endotrypanum, Porcisia, Zelonia, Crithidia, and Leptomonas. Proteomics 2024; 24:e2100313. [PMID: 38850190 DOI: 10.1002/pmic.202100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 06/10/2024]
Abstract
Evolutionary relationships among parasites of the subfamily Leishmaniinae, which comprises pathogen agents of leishmaniasis, were inferred based on differential protein expression profiles from mass spectrometry-based quantitative data using the PhyloQuant method. Evolutionary distances following identification and quantification of protein and peptide abundances using Proteome Discoverer and MaxQuant software were estimated for 11 species from six Leishmaniinae genera. Results clustered all dixenous species of the genus Leishmania, subgenera L. (Leishmania), L. (Viannia), and L. (Mundinia), sister to the dixenous species of genera Endotrypanum and Porcisia. Placed basal to the assemblage formed by all these parasites were the species of genera Zelonia, Crithidia, and Leptomonas, so far described as monoxenous of insects although eventually reported from humans. Inferences based on protein expression profiles were congruent with currently established phylogeny using DNA sequences. Our results reinforce PhyloQuant as a valuable approach to infer evolutionary relationships within Leishmaniinae, which is comprised of very tightly related trypanosomatids that are just beginning to be phylogenetically unraveled. In addition to evolutionary history, mapping of species-specific protein expression is paramount to understand differences in infection processes, tissue tropisms, potential to jump from insects to vertebrates including humans, and targets for species-specific diagnostic and drug development.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evaristo Villalba Alemán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joyce S Saad
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Deivid Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deborah Brandt-Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Jeffrey J Shaw
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
3
|
Macedo DH, Grybchuk D, Režnarová J, Votýpka J, Klocek D, Yurchenko T, Ševčík J, Magri A, Dolinská MU, Záhonová K, Lukeš J, Servienė E, Jászayová A, Serva S, Malysheva MN, Frolov AO, Yurchenko V, Kostygov AY. Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris. BMC Biol 2023; 21:191. [PMID: 37697369 PMCID: PMC10496375 DOI: 10.1186/s12915-023-01687-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease. One of the close relatives of leishmaniae, Leptomonas pyrrhocoris, has been previously shown to harbor viruses of the groups not documented in other trypanosomatids. At the same time, this species has a worldwide distribution and high prevalence in the natural populations of its cosmopolitan firebug host. It therefore represents an attractive model to study the diversity of RNA viruses. RESULTS We surveyed 106 axenic cultures of L. pyrrhocoris and found that 64 (60%) of these displayed 2-12 double-stranded RNA fragments. The analysis of next-generation sequencing data revealed four viral groups with seven species, of which up to five were simultaneously detected in a single trypanosomatid isolate. Only two of these species, a tombus-like virus and an Ostravirus, were earlier documented in L. pyrrhocoris. In addition, there were four new species of Leishbuviridae, the family encompassing trypanosomatid-specific viruses, and a new species of Qinviridae, the family previously known only from metatranscriptomes of invertebrates. Currently, this is the only qinvirus with an unambiguously determined host. Our phylogenetic inferences suggest reassortment in the tombus-like virus owing to the interaction of different trypanosomatid strains. Two of the new Leishbuviridae members branch early on the phylogenetic tree of this family and display intermediate stages of genomic segment reduction between insect Phenuiviridae and crown Leishbuviridae. CONCLUSIONS The unprecedented wide range of viruses in one protist species and the simultaneous presence of up to five viral species in a single Leptomonas pyrrhocoris isolate indicate the uniqueness of this flagellate. This is likely determined by the peculiarity of its firebug host, a highly abundant cosmopolitan species with several habits ensuring wide distribution and profuseness of L. pyrrhocoris, as well as its exposure to a wider spectrum of viruses compared to other trypanosomatids combined with a limited ability to transmit these viruses to its relatives. Thus, L. pyrrhocoris represents a suitable model to study the adoption of new viruses and their relationships with a protist host.
Collapse
Affiliation(s)
- Diego H Macedo
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University of Stockholm, Stockholm, Sweden
| | - Danyil Grybchuk
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Jana Režnarová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University Hospital in Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Donnamae Klocek
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Jan Ševčík
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Alice Magri
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Michaela Urda Dolinská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Kristína Záhonová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412, Vilnius, Lithuania
| | - Alexandra Jászayová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Slovak Academy of Sciences, 040 01, Košice, Slovakia
- University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, 10257, Vilnius, Lithuania
| | - Marina N Malysheva
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | | | - Alexei Yu Kostygov
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
4
|
Kaewmee S, Mano C, Phanitchakun T, Ampol R, Yasanga T, Pattanawong U, Junkum A, Siriyasatien P, Bates PA, Jariyapan N. Natural infection with Leishmania ( Mundinia) martiniquensis supports Culicoides peregrinus (Diptera: Ceratopogonidae) as a potential vector of leishmaniasis and characterization of a Crithidia sp. isolated from the midges. Front Microbiol 2023; 14:1235254. [PMID: 37675418 PMCID: PMC10478001 DOI: 10.3389/fmicb.2023.1235254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
The prevalence of autochthonous leishmaniasis in Thailand is increasing but the natural vectors that are responsible for transmission remain unknown. Experimental in vivo infections in Culicoides spp. with Leishmania (Mundinia) martiniquensis and Leishmania (Mundinia) orientalis, the major causative pathogens in Thailand, have demonstrated that biting midges can act as competent vectors. Therefore, the isolation and detection of Leishmania and other trypanosomatids were performed in biting midges collected at a field site in an endemic area of leishmaniasis in Tha Ruea and a mixed farm of chickens, goats, and cattle in Khuan Phang, Nakhon Si Thammarat province, southern Thailand. Results showed that Culicoides peregrinus was the abundant species (>84%) found in both locations and only cow blood DNA was detected in engorged females. Microscopic examination revealed various forms of Leishmania promastigotes in the foregut of several C. peregrinus in the absence of bloodmeal remnants, indicating established infections. Molecular identification using ITS1 and 3'UTR HSP70 type I markers showed that the Leishmania parasites found in the midges were L. martiniquensis. The infection rate of L. martiniquensis in the collected flies was 2% in Tha Ruea and 6% in Khuan Phang, but no L. orientalis DNA or parasites were found. Additionally, organisms from two different clades of Crithidia, both possibly new species, were identified using SSU rRNA and gGAPDH genes. Choanomastigotes and promastigotes of both Crithidia spp. were observed in the hindgut of the dissected C. peregrinus. Interestingly, midges infected with both L. martiniquensis and Crithidia were found. Moreover, four strains of Crithidia from one of the clades were successfully isolated into culture. These parasites could grow at 37°C in the culture and infect BALB/c mice macrophages but no multiplication was observed, suggesting they are thermotolerant monoxenous trypanosomatids similar to Cr. thermophila. These findings provide the first evidence of natural infection of L. martiniquensis in C. peregrinus supporting it as a potential vector of L. martiniquensis.
Collapse
Affiliation(s)
- Saowalak Kaewmee
- Medical Parasitology Program, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chonlada Mano
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanari Phanitchakun
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Narissara Jariyapan
- Center of Excellence in Vector Biology and Vector-Borne Disease, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, Záhonová K, Zimmer SL, Yurchenko V, Butenko A. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics 2023; 24:471. [PMID: 37605127 PMCID: PMC10441713 DOI: 10.1186/s12864-023-09591-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435, Moscow, Russia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Sara L Zimmer
- Duluth Campus, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Kuo Y, Lu YH, Lin YH, Lin YC, Wu YL. Elevated temperature affects energy metabolism and behavior of bumblebees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103932. [PMID: 36921734 DOI: 10.1016/j.ibmb.2023.103932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Bumblebees (Bombus eximius) are one of the most prominent pollinators in the agricultural industry because of their adaptation to temperate climates and pollination behavior (buzz pollination). Several studies have explained the need to increase conservation efforts for bumblebees due to climate change, but studies on the impact of climate change on pollination behavior of bumblebees have been limited. The present study investigated the effect of elevated temperatures on the survival and physiology of bumblebees. The behavioral changes in flight ability and pollen collection were also determined. We found that elevated temperature affects the survival rate and appetite of bumblebees. Gene expression analysis suggested that the energy metabolic pathway tends to involve anaerobic respiration during heat stress. The energy produced is mainly used to maintain essential physiological functions, such as expression of heat shock proteins and conversion of peroxides to harmless molecules. Energy distributed to flight muscles is reduced during heat stress, resulting in lower wing beating frequency. In addition, the flight path of bumblebees is shortened during heat stress, thereby further contributing to reduced pollen collection. These results demonstrate that elevated temperatures cause detrimental effects to bumblebees and can also potentially reduce crop production.
Collapse
Affiliation(s)
- Yun Kuo
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Yu-Chun Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
7
|
Kostygov AY, Malysheva MN, Ganyukova AI, Razygraev AV, Drachko DO, Yurchenko V, Agasoi VV, Frolov AO. The Roles of Mosquitoes in the Circulation of Monoxenous Trypanosomatids in Temperate Climates. Pathogens 2022; 11:1326. [PMID: 36422578 PMCID: PMC9695722 DOI: 10.3390/pathogens11111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/23/2023] Open
Abstract
Monoxenous (insect-restricted) trypanosomatids are highly diverse and abundant in nature. While many papers focus on the taxonomy and distribution of these parasites, studies on their biology are still scarce. In particular, this concerns trypanosomatids inhabiting the ubiquitous mosquitoes. To shed light on the circulation of monoxenous trypanosomatids with the participation of mosquitoes, we performed a multifaceted study combining the examination of naturally- and experimentally-infected insects using light and electron microscopy and molecular identification of parasites. Our examination of overwintering mosquitoes (genera Culex and Culiseta) revealed that their guts contained living trypanosomatids, which can be spread during the next season. Experimental infections with Crithidia spp. demonstrated that imagines represent permissive hosts, while larvae are resistant to these parasites. We argue that for the parasites with wide specificity, mosquitoes act as facultative hosts. Other trypanosomatids may have specific adaptations for vertical transmission in these insects at the expense of their potential to infect a wider range of hosts and, consequently, abundance in nature.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Marina N. Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Anna I. Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Alexey V. Razygraev
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Daria O. Drachko
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Vera V. Agasoi
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
8
|
Dario MA, Furtado C, Lisboa CV, de Oliveira F, Santos FM, D’Andrea PS, Roque ALR, Xavier SCDC, Jansen AM. Trypanosomatid Richness Among Rats, Opossums, and Dogs in the Caatinga Biome, Northeast Brazil, a Former Endemic Area of Chagas Disease. Front Cell Infect Microbiol 2022; 12:851903. [PMID: 35795183 PMCID: PMC9251133 DOI: 10.3389/fcimb.2022.851903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Parasites are important components of the immense n-dimensional trophic network that connects all living beings because they, among others, forge biodiversity and deeply influence ecological evolution and host behavior. In this sense, the influence of Trypanosomatidae remains unknown. The aim of this study was to determine trypanosomatid infection and richness in rats, opossums, and dogs in the semiarid Caatinga biome. We submitted DNA samples from trypanosomatids obtained through axenic cultures of the blood of these mammals to mini exon multiplex-PCR, Sanger, and next-generation sequencing targeting the 18S rDNA gene. Phylogenetic analyses were performed to identify genetic diversity in the Trypanosomatidae family. Shannon, Simpson, equability, and beta-diversity indices were calculated per location and per mammalian host. Dogs were surveyed for trypanosomatid infection through hemocultures and serological assays. The examined mammal species of this area of the Caatinga biome exhibited an enormous trypanosomatid species/genotypes richness. Ten denoised Operational Taxonomic Units (ZOTUs), including three species (Trypanosoma cruzi, Trypanosoma rangeli and Crithidia mellificae) and one Trypanosoma sp. five genotypes/lineages (T. cruzi DTU TcI, TcII, and TcIV; T. rangeli A and B) and four DTU TcI haplotypes (ZOTU1, ZOTU2, ZOTU5, and ZOTU10 merged), as well as 13 Amplicon Sequence Variants (ASVs), including five species (T. cruzi, T. rangeli, C. mellificae, Trypanosoma dionisii, and Trypanosoma lainsoni), five genotypes/lineages (same as the ZOTUs) and six DTU TcI haplotypes (ASV, ASV1, ASV2, ASV3, ASV5 and ASV13), were identified in single and mixed infections. We observed that trypanosomatids present a broad host spectrum given that species related to a single host are found in other mammals from different taxa. Concomitant infections between trypanosomatids and new host-parasite relationships have been reported, and this immense diversity in mammals raised questions, such as how this can influence the course of the infection in these animals and its transmissibility. Dogs demonstrated a high infection rate by T. cruzi as observed by positive serological results (92% in 2005 and 76% in 2007). The absence of positive parasitological tests confirmed their poor infectivity potential but their importance as sentinel hosts of T. cruzi transmission.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Augusta Dario,
| | - Carolina Furtado
- Genetic Laboratory, National Cancer Institute, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe de Oliveira
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Filipe Martins Santos
- Environmental Sciences and Agricultural Sustainability Postgraduation, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Paulo Sérgio D’Andrea
- Wild Mammal Reservoirs Biology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Ana Maria Jansen
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, Glanzová K, Leštinová T, Matveeva NS, Chmelová Ľ, Mlacovská D, Spitzová T, Vojtková B, Volf P, Yurchenko V, Kraeva N. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021; 12:852-867. [PMID: 33724149 PMCID: PMC7971327 DOI: 10.1080/21505594.2021.1896830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristýna Glanzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadezhda S. Matveeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Denisa Mlacovská
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Spitzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
10
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
11
|
A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its " Candidatus Pandoraea novymonadis" Endosymbiont. mBio 2021; 12:e0160621. [PMID: 34399629 PMCID: PMC8406214 DOI: 10.1128/mbio.01606-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont “Candidatus Pandoraea novymonadis.” Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the “Ca. Pandoraea novymonadis” genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches.
Collapse
|
12
|
Dario MA, Lisboa CV, Silva MV, Herrera HM, Rocha FL, Furtado MC, Moratelli R, Rodrigues Roque AL, Jansen AM. Crithidia mellificae infection in different mammalian species in Brazil. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:58-69. [PMID: 33981571 PMCID: PMC8085711 DOI: 10.1016/j.ijppaw.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
Crithidia mellificae, a monoxenous trypanosomatid considered restricted to insects, was recently reported to infect a bat. Herein, C. mellificae has been demonstrated to have a wider range of vertebrate hosts and distribution in Brazilian biomes than once thought. Parasites isolated from haemocultures were characterized using V7V8 SSU rDNA and glyceraldehyde 3-phosphate dehydrogenase genes. Coatis (Nasua nasua) in the Cerrado; marmosets (Callithrix sp.) and bats (Carollia perspicillata, Myotis lavali, M. izecksohni, Artibeus lituratus) in the Atlantic Forest; crab-eating foxes (Cerdocyon thous) and ocelot (Leopardus pardalis) in the Pantanal biomes were infected by trypanosomatids that displayed choanomastigote forms in haemoculture in Giemsa-stained slide smears. Molecular characterization and phylogenetic inference confirmed the infection of C. mellificae in these animals. Moreover, slight differences in C. mellificae sequences were observed. Crithidia mellificae growth curves were counted at 27°C, 36°C and 37°C, and the morphotypes were able to grow and survive for up to 16 days. Serological titers for C. mellificae were observed in nonhuman primates, demonstrating that this parasite is able to induce a humoral immune response in an infected mammal. These results showed that host specificity in trypanosomatids is complex and far from understood.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Vicente Silva
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fabiana Lopes Rocha
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
- IUCN SSC Species Survival Center. Parque das Aves, Foz do Iguaçú, Paraná, Brazil
| | | | - Ricardo Moratelli
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author.
| |
Collapse
|
13
|
Boucinha C, Caetano AR, Santos HLC, Helaers R, Vikkula M, Branquinha MH, dos Santos ALS, Grellier P, Morelli KA, d‘Avila-Levy CM. Analysing ambiguities in trypanosomatids taxonomy by barcoding. Mem Inst Oswaldo Cruz 2020; 115:e200504. [PMID: 32578684 PMCID: PMC7304411 DOI: 10.1590/0074-02760200504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.
Collapse
Affiliation(s)
- Carolina Boucinha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Amanda R Caetano
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Helena LC Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Raphael Helaers
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Miikka Vikkula
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
| | | | - Philippe Grellier
- Muséum National d‘Histoire Naturelle, Unité Molécules de Communication et Adaptation des Microorganisme, Paris, France
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini d‘Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| |
Collapse
|
14
|
Škodová-Sveráková I, Záhonová K, Bučková B, Füssy Z, Yurchenko V, Lukeš J. Catalase and Ascorbate Peroxidase in Euglenozoan Protists. Pathogens 2020; 9:pathogens9040317. [PMID: 32344595 PMCID: PMC7237987 DOI: 10.3390/pathogens9040317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, we studied the biochemical properties and evolutionary histories of catalase (CAT) and ascorbate peroxidase (APX), two central enzymes of reactive oxygen species detoxification, across the highly diverse clade Eugenozoa. This clade encompasses free-living phototrophic and heterotrophic flagellates, as well as obligate parasites of insects, vertebrates, and plants. We present evidence of several independent acquisitions of CAT by horizontal gene transfers and evolutionary novelties associated with the APX presence. We posit that Euglenozoa recruit these detoxifying enzymes for specific molecular tasks, such as photosynthesis in euglenids and membrane-bound peroxidase activity in kinetoplastids and some diplonemids.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (I.Š.-S.); (J.L.)
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic;
| | - Barbora Bučková
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | - Zoltán Füssy
- Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic;
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Correspondence: (I.Š.-S.); (J.L.)
| |
Collapse
|
15
|
Polanska N, Ishemgulova A, Volfova V, Flegontov P, Votypka J, Yurchenko V, Volf P. Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources. PLoS One 2020; 15:e0230537. [PMID: 32208452 PMCID: PMC7092997 DOI: 10.1371/journal.pone.0230537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods’ proteins. In the sialome, all proteins typical for sand fly saliva were identified–antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5’nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
Collapse
Affiliation(s)
- Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Aygul Ishemgulova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
d’Avila-Levy CM, Bearzatto B, Ambroise J, Helaers R, Butenko A, Yurchenko V, A. Morelli K, L. C. Santos H, Brouillard P, Grellier P, Gala JL, Vikkula M. First Draft Genome of the Trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore Technology and Illumina Sequencing. Trop Med Infect Dis 2020; 5:tropicalmed5010025. [PMID: 32069939 PMCID: PMC7157233 DOI: 10.3390/tropicalmed5010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we present first draft genome sequence of the trypanosomatid Herpetomonas muscarum ingenoplastis. This parasite was isolated repeatedly in the black blowfly, Phormia regina, and it forms a phylogenetically distinct clade in the Trypanosomatidae family.
Collapse
Affiliation(s)
- Claudia M. d’Avila-Levy
- Coleção de Protozoários, Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (K.A.M.); (H.L.C.S.)
- de Duve Institute, University of Louvain, B-1200 Brussels, Belgium; (R.H.); (P.B.); (M.V.)
- Correspondence: ; Tel.: +55-21-2562-1014
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées, Université Catholique de Louvain, B-1200 Brussels, Belgium; (B.B.); (J.A.); (J.-L.G.)
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Université Catholique de Louvain, B-1200 Brussels, Belgium; (B.B.); (J.A.); (J.-L.G.)
| | - Raphaël Helaers
- de Duve Institute, University of Louvain, B-1200 Brussels, Belgium; (R.H.); (P.B.); (M.V.)
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic;
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435 Moscow, Russia
| | - Karina A. Morelli
- Coleção de Protozoários, Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (K.A.M.); (H.L.C.S.)
- Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Helena L. C. Santos
- Coleção de Protozoários, Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (K.A.M.); (H.L.C.S.)
| | - Pascal Brouillard
- de Duve Institute, University of Louvain, B-1200 Brussels, Belgium; (R.H.); (P.B.); (M.V.)
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganisme (UMR 7245 CNRS MCAM), Muséum National d’Histoire Naturelle, Sorbonne Universités, 75005 Paris, France;
| | - Jean-Luc Gala
- Centre de Technologies Moléculaires Appliquées, Université Catholique de Louvain, B-1200 Brussels, Belgium; (B.B.); (J.A.); (J.-L.G.)
| | - Miikka Vikkula
- de Duve Institute, University of Louvain, B-1200 Brussels, Belgium; (R.H.); (P.B.); (M.V.)
| |
Collapse
|
17
|
Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium. Protist 2019; 170:125698. [PMID: 31760169 DOI: 10.1016/j.protis.2019.125698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.
Collapse
|
18
|
Insect trypanosomatids in Papua New Guinea: high endemism and diversity. Int J Parasitol 2019; 49:1075-1086. [PMID: 31734337 DOI: 10.1016/j.ijpara.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022]
Abstract
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.
Collapse
|
19
|
Horáková E, Faktorová D, Kraeva N, Kaur B, Van Den Abbeele J, Yurchenko V, Lukeš J. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J 2019; 287:964-977. [PMID: 31593329 DOI: 10.1111/febs.15083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Catalase is a widespread heme-containing enzyme, which converts hydrogen peroxide (H2 O2 ) to water and molecular oxygen, thereby protecting cells from the toxic effects of H2 O2 . Trypanosoma brucei is an aerobic protist, which conspicuously lacks this potent enzyme, present in virtually all organisms exposed to oxidative stress. To uncover the reasons for its absence in T. brucei, we overexpressed different catalases in procyclic and bloodstream stages of the parasite. The heterologous enzymes originated from the related insect-confined trypanosomatid Crithidia fasciculata and the human. While the trypanosomatid enzyme (cCAT) operates at low temperatures, its human homolog (hCAT) is adapted to the warm-blooded environment. Despite the presence of peroxisomal targeting signal in hCAT, both human and C. fasciculata catalases localized to the cytosol of T. brucei. Even though cCAT was efficiently expressed in both life cycle stages, the enzyme was active in the procyclic stage, increasing cell's resistance to the H2 O2 stress, yet its activity was suppressed in the cultured bloodstream stage. Surprisingly, following the expression of hCAT, the ability to establish the T. brucei infection in the tsetse fly midgut was compromised. In the mouse model, hCAT attenuated parasitemia and, consequently, increased the host's survival. Hence, we suggest that the activity of catalase in T. brucei is beneficial in vitro, yet it becomes detrimental for parasite's proliferation in both invertebrate and vertebrate hosts, leading to an inability to carry this, otherwise omnipresent, enzyme.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic
| | - Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
20
|
Molecular Identification of Species Caused Cutaneous Leishmaniasis in Southern Zone of Iran. J Arthropod Borne Dis 2019; 13:198-205. [PMID: 31803781 PMCID: PMC6885138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/30/2019] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Leishmania major and Leishmania tropica are two main species causing cutaneous leishmaniasis (CL) in Iran. Recently, Crithidia spp. has also been reported in the wound of patients with CL. In this study, we determined the species causing CL in the southern of Iran and the role of Crithidia spp. in creating skin ulcers. METHODS In this cross-sectional study from Apr to Sep 2016, 66 patients with CL referred to Diagnostic Lab of Leishmaniasis, Valfajr Health Center, Shiraz, Iran, were selected. After DNA extraction from the Giemsa stained smears, all samples were amplified in two separate steps using specific primers, firstly, to differentiate Leishmania species and then to identify Crithidia spp. RESULTS Two species L. major and L. tropica were responsible for 60 and 6 cases, respectively. Moreover, in two patients, mixed infection with Crithidia was confirmed. In mix infection cases, the morphology of the cutaneous ulcers was not different from the wounds of other patients. CONCLUSION Leishmania major is responsible for the most common CL in southern Iran. In addition, in two patients with L. major and L. tropica, mix infection with Crithidia was confirmed. The potential role of Crithidia as the main factor for CL and the probability of this parasite to have synergistic effects on Leishmania, as a hypothesis, requires more comprehensive researches on the ambiguity of this protozoon.
Collapse
|
21
|
Kostygov AY, Butenko A, Yurchenko V. On monoxenous trypanosomatids from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Trop Med Int Health 2018; 24:127-128. [PMID: 30307678 DOI: 10.1111/tmi.13168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
22
|
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus. mBio 2018; 9:e01932-18. [PMID: 30327446 PMCID: PMC6191543 DOI: 10.1128/mbio.01932-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
23
|
Bionomics of phlebotomine sand flies species (Diptera: Psychodidae) and their natural infection with Leishmania and Crithidia in Fars province, southern Iran. J Parasit Dis 2018; 42:511-518. [PMID: 30538348 DOI: 10.1007/s12639-018-1027-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022] Open
Abstract
Phlebotominae sand flies are involved in human diseases, such as leishmaniasis, and cause a considerable number of deaths every year. Besides, some of them have been identified as allergen sources or the potential mechanical vectors related to nosocomial infections. The present study aimed to assess the monthly activity, fauna, and detection of protozoan agents in phlebotomine sand flies using polymerase chain reaction (PCR) in re-emerging zoonotic cutaneous leishmaniasis foci of Shiraz and Kharameh in Fars province, southern Iran during 2016-2017. To determine the monthly activity, sand flies were caught from indoors and outdoors of both studied areas. Afterward, all female phlebotomine sand flies were processed for DNA extraction and PCR assays for Leishmania and Crithidia detections. During the study, 6975 sand flies of 16 species (eight Phlebotomus and eight Sergentomyia species) were caught in both foci. Sand flies' monthly activities started in early April and terminated in late November and October. Additionally, two active peaks of sand flies were observed in both foci; first in June and second in August to September. Phlebotomus papatasi (47.1%) was the most dominant species in out/indoors of both Shiraz (31.1%) and Kharameh (16.0%). It was also the only species which was found infected with Leishmania major, indeed, 2.68% and 2.53% of P. papatasi were infected to L. major in Kharameh and Shiraz, respectively. However, none of the female sand flies was positive for Crithidia spp. Despite various control strategies, especially against Leishmania, considerable cases of leishmaniasis are recorded from Iran every year. Phlebotomine plays the main role in transmission of Leishmania in these foci. Therefore, further studies are needed to determine the role of different phlebotomine species in epidemiological aspects of leishmaniasis.
Collapse
|
24
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
25
|
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One 2018; 13:e0189738. [PMID: 29304093 PMCID: PMC5755769 DOI: 10.1371/journal.pone.0189738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.
Collapse
Affiliation(s)
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zürich, Switzerland
| | - Seth Barribeau
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Louis du Plessis
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zurich, Zürich, Switzerland
| |
Collapse
|