1
|
Sekino N, Kano M, Murakami K, Toyozumi T, Hayano K, Ohira G, Matsubara H. Current findings on the antitumor effects of metformin on esophageal squamous cell carcinoma (Review). Mol Clin Oncol 2024; 21:58. [PMID: 39006474 PMCID: PMC11240871 DOI: 10.3892/mco.2024.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an intractable type of cancer that requires novel therapeutic modalities, since the therapeutic outcomes are often inadequate, even in response to multidisciplinary treatment. The antitumor effect of metformin, an antidiabetic drug, has been reported in esophageal cancer; however, its effects are diverse. Since various multidisciplinary therapies are used in ESCC, the antitumor effect of metformin is expected to be synergistic in some treatment strategies. The present review summarizes the antitumor effects of metformin and discusses its use in combination with existing therapies. The present study reviewed relevant studies where the molecular targets of metformin (AMPK and inflammatory system signals) were described, followed by the classification and organization of its antitumor effects, and subsequently summarized the current research on its antitumor effects, especially in ESCC. A number of studies have reported that metformin prevents the development of ESCC and exerts its antitumor effects through various pathways. In addition, metformin has been shown to inhibit tumor growth, induce apoptosis, inhibit cancer cell invasion, migration and angiogenesis into the tumor, and decrease tumor malignancy, such as metastasis. Furthermore, it may modulate host tumor immunity in a tumor-suppressive manner and is expected to improve prognosis following treatment for ESCC. Notably, metformin may be beneficial in combination with chemotherapy, such as cisplatin, and radiation. By contrast, it has been shown to potentially induce resistance to 5-fluorouracil. Finally, the effects of metformin in combination with other therapies are discussed in the present study, and perspectives on the potential benefits of metformin for future ESCC treatment are presented. In conclusion, the present review may be useful in improving the understanding of the wide range of antitumor effects of metformin. Although some concerning points remain, using metformin in ESCC treatment could be promising. Notably, more knowledge needs to be accumulated regarding the effects of metformin on ESCC.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Gaku Ohira
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
2
|
Zhou T, Zhang X, Yang D, Wei W, Gan J, Xia X, Chen Q, Jiang J, Feng X. Metformin overcomes chemoresistance by regulating stemness via KLF4 in oral squamous cell carcinoma. Oral Dis 2024. [PMID: 39039738 DOI: 10.1111/odi.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Chemoresistance is a common event after chemotherapy, including oral squamous cell carcinoma (OSCC). Accumulated evidence suggests that the cancer stemness significantly contributes to therapy resistance. An unresolved question remains regarding how to effectively overcome OSCC chemoresistance by targeting stemness. This study aims to investigate the antitumor effect of metformin and clarify the potential molecular mechanisms. METHODS Cellular models resistant to chemotherapy were established, and their viability and sphere-forming ability were assessed using CCK-8 and soft agar formation assays, respectively. RNA-seq and Western blotting analyses were employed to delve into the molecular pathways. Furthermore, to corroborate the inhibitory effects of metformin and cisplatin at an animal level, a subcutaneous tumor transplantation model was instituted. RESULTS Metformin as a monotherapy exhibited inhibition of stemness traits via Krüppel-like factor 4 (KLF4). Metformin and cisplatin can synergically inhibit cell proliferation and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of cisplatin and metformin on tumor in mice. CONCLUSION Our study proposes a potential therapeutic approach of combining chemotherapy with metformin to overcome chemoresistance in OSCC.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Papadakos SP, Argyrou A, Lekakis V, Arvanitakis K, Kalisperati P, Stergiou IE, Konstantinidis I, Schizas D, Koufakis T, Germanidis G, Theocharis S. Metformin in Esophageal Carcinoma: Exploring Molecular Mechanisms and Therapeutic Insights. Int J Mol Sci 2024; 25:2978. [PMID: 38474224 DOI: 10.3390/ijms25052978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Esophageal cancer (EC) remains a formidable malignancy with limited treatment options and high mortality rates, necessitating the exploration of innovative therapeutic avenues. Through a systematic analysis of a multitude of studies, we synthesize the diverse findings related to metformin's influence on EC. This review comprehensively elucidates the intricate metabolic pathways and molecular mechanisms through which metformin may exert its anti-cancer effects. Key focus areas include its impact on insulin signaling, AMP-activated protein kinase (AMPK) activation, and the mTOR pathway, which collectively contribute to its role in mitigating esophageal cancer progression. This review critically examines the body of clinical and preclinical evidence surrounding the potential role of metformin, a widely prescribed anti-diabetic medication, in EC management. Our examination extends to the modulation of inflammation, oxidative stress and angiogenesis, revealing metformin's potential as a metabolic intervention in esophageal cancer pathogenesis. By consolidating epidemiological and clinical data, we assess the evidence that supports metformin's candidacy as an adjuvant therapy for esophageal cancer. By summarizing clinical and preclinical findings, our review aims to enhance our understanding of metformin's role in EC management, potentially improving patient care and outcomes.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Polyxeni Kalisperati
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece
| |
Collapse
|
4
|
Cui MY, Yi X, Cao ZZ, Zhu DX, Wu J. Targeting Strategies for Aberrant Lipid Metabolism Reprogramming and the Immune Microenvironment in Esophageal Cancer: A Review. JOURNAL OF ONCOLOGY 2022; 2022:4257359. [PMID: 36106333 PMCID: PMC9467784 DOI: 10.1155/2022/4257359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is of high importance to occurrence, development, and treatment resistance. As evidenced by recent studies, pathways (e.g., Wnt/β-catenin, AMPK, and Hippo) are critical to the proliferation, differentiation, and self-renewal of esophageal cancer. In addition, the above pathways play a certain role in regulating esophageal cancer and act as potential therapeutic targets. Over the past few years, the function of lipid metabolism in controlling tumor cells and immune cells has aroused extensive attention. It has been reported that there are intricate interactions between lipid metabolism reprogramming between immune and esophageal cancer cells, whereas molecular mechanisms should be studied in depth. Immune cells have been commonly recognized as a vital player in the esophageal cancer microenvironment, having complex crosstalk with cancer cells. It is increasingly evidenced that the function of immune cells in the tumor microenvironment (TME) is significantly correlated with abnormal lipid metabolism. In this review, the latest findings in lipid metabolism reprogramming in TME are summarized, and the above findings are linked to esophageal cancer progression. Aberrant lipid metabolism and associated signaling pathways are likely to serve as a novel strategy to treat esophageal cancer through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Meng-Ying Cui
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xing Yi
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Zhen-Zhen Cao
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dan-Xia Zhu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Wu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Mo Y, Liu B, Qiu S, Wang X, Zhong L, Han X, Mi F. Down‐regulation of microRNA‐34c‐5p alleviates neuropathic pain
via
the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve. J Neurochem 2020; 154:301-315. [PMID: 32126145 DOI: 10.1111/jnc.14998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yanshuai Mo
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Benjuan Liu
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Shuang Qiu
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Xueqin Wang
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Lina Zhong
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Xiao Han
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| | - Fuli Mi
- Department of Anesthesiology Linyi People’s Hospital Linyi P.R. China
| |
Collapse
|
7
|
Kim HS, Kim JH, Jang HJ, Lee J. The addition of metformin to systemic anticancer therapy in advanced or metastatic cancers: a meta-analysis of randomized controlled trials. Int J Med Sci 2020; 17:2551-2560. [PMID: 33029097 PMCID: PMC7532491 DOI: 10.7150/ijms.50338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Preclinical studies have demonstrated that metformin has anticancer properties and act in additive or synergistic way when combined with anticancer agents. We conducted this meta-analysis of randomized clinical trials to evaluate the effect of metformin added to systemic anticancer therapy in patients with advanced or metastatic cancer. A computerized systematic electronic search was performed using PubMed, PMC, EMBASE, Cochrane Library, and Web of Science databases (up to June 2020). From nine randomized clinical trials, 821 patients were included in the pooled analyses of odds ratios (ORs) with 95% confidence intervals (CIs) for overall response rate (ORR) and hazard ratios (HRs) with 95% CIs for progression-free survival (PFS) and overall survival (OS). The concomitant use of metformin with systemic anticancer therapy did not increase tumor response (the pooled OR of ORR = 1.23, 95% CI: 0.89-1.71, p = 0.21), compared with anticancer therapy alone. In terms of survival, metformin added to anticancer agents failed to prolong PFS (HR = 0.95, 95% CI: 0.75-1.21, p = 0.68) and OS (HR = 0.97, 95% CI: 0.80-1.16, p = 0.71). In conclusion, this meta-analysis of randomized clinical trials indicates that the addition of metformin to systemic anticancer therapy has no clinical benefits in patients with advanced or metastatic cancer.
Collapse
Affiliation(s)
- Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Gyeonggi-Do, Republic of Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
8
|
Yi Y, Zhang W, Yi J, Xiao ZX. Role of p53 Family Proteins in Metformin Anti-Cancer Activities. J Cancer 2019; 10:2434-2442. [PMID: 31258748 PMCID: PMC6584340 DOI: 10.7150/jca.30659] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used as therapy for type 2 diabetes for many years. Clinical and basic evidence as indicated that metformin has anti-cancer activities. It has been well-established that metformin activates AMP-activated protein kinase (AMPK), which in turn regulates energy homeostasis. However, the mechanistic aspects of metformin anti-cancer activity remain elusive. p53 family proteins, including p53, p63 and p73, have diverse biological functions, including regulation of cell growth, survival, development, senescence and aging. In this review, we highlight the evidence and mechanisms by which metformin inhibits cancer cell survival and tumor growth. We also aimed to discuss the role of p53 family proteins in metformin-mediated suppression of cancer growth and survival.
Collapse
|
9
|
Isoalantolactone Inhibits Esophageal Squamous Cell Carcinoma Growth Through Downregulation of MicroRNA-21 and Derepression of PDCD4. Dig Dis Sci 2018; 63:2285-2293. [PMID: 29781054 DOI: 10.1007/s10620-018-5119-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study was designed to explore the anticancer potential of isoalantolactone, a sesquiterpene lactone, on esophageal squamous cell carcinoma (ESCC) cells and associated molecular mechanisms. METHODS ESCC cell lines were treated with isoalantolactone or vehicle and tested for viability, proliferation, cell cycle distribution, and apoptosis. Xenograft tumor studies in nude mice were done to examine the in vivo anticancer effect of isoalantolactone. RESULTS Isoalantolactone treatment reduced ESCC cell viability and proliferation in vitro, which was coupled with induction of G0/G1 cell cycle arrest and apoptosis. In vivo studies confirmed the growth-suppressive effect of isoalantolactone on ESCC cells. Mechanistically, isoalantolactone reversed microRNA-21-mediated repression of programmed cell death 4 (PDCD4). Overexpression of microRNA-21 and knockdown of PDCD4 blocked the growth suppression and apoptosis induction by isoalantolactone in ESCC cells. CONCLUSIONS Isoalantolactone shows growth-suppressive activity against ESCC cells, which is ascribed to upregulation of PDCD4 via downregulation of microRNA-21.
Collapse
|