1
|
Silva AL, Oliveira JL, do Nascimento RP, Santos LO, de Araújo FM, Dos Santos BL, Santana RC, Moreira ELT, Batatinha MJM, Alves IM, Velozo ES, Victor MM, Assis AM, Almeida RF, de Souza DOG, Silva VDA, Costa SL. Monocrotaline induces acutely cerebrovascular lesions, astrogliosis and neuronal degeneration associated with behavior changes in rats: A model of vascular damage in perspective. Neurotoxicology 2023; 94:59-70. [PMID: 36336098 DOI: 10.1016/j.neuro.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1β and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.
Collapse
Affiliation(s)
- Adriana L Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Joana L Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Ravena P do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Letícia O Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Fillipe M de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Balbino L Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; Federal University of Vale do São Francisco, Brazil
| | - Rejane C Santana
- Laboratory of Neuroscience, Federal University of Bahia, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Eduardo Luiz T Moreira
- School of Veterinary Medicine and Animal Science, Hospital of Veterinary Medicine, Department of Anatomy, Pathology and Veterinary Clinics, Federal University of Bahia, Brazil
| | - Maria José M Batatinha
- Laboratory of Toxicology, School of Veterinary Medicine and Animal Science, Hospital of Veterinary Medicine, Federal University of Bahia, Brazil
| | - Iura M Alves
- Faculty of Pharmacy, Department of Medication, Federal University of Bahia, Brazil
| | - Eudes S Velozo
- Faculty of Pharmacy, Department of Medication, Federal University of Bahia, Brazil
| | - Mauricio M Victor
- Organic Chemistry Department, Chemistry Institute, Federal University of Bahia, Brazil
| | - Adriano M Assis
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; Catholic University of Pelotas, Brazil
| | - Roberto F Almeida
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; Federal University of Ouro Preto, Brazil
| | - Diogo O G de Souza
- Institute of Basic Health Sciences Department of Biochemistry, Federal University of Rio Grande do Sul, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil
| | - Victor Diógenes A Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil.
| | - Silvia L Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Brazil; INCT for Excitotoxicity and Neuroprotection - CNPq (INCT-EN, BR), Brazil.
| |
Collapse
|
2
|
Ordog K, Horvath O, Eros K, Bruszt K, Toth S, Kovacs D, Kalman N, Radnai B, Deres L, Gallyas F, Toth K, Halmosi R. Mitochondrial protective effects of PARP-inhibition in hypertension-induced myocardial remodeling and in stressed cardiomyocytes. Life Sci 2021; 268:118936. [PMID: 33421523 DOI: 10.1016/j.lfs.2020.118936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
AIMS During oxidative stress mitochondria become the main source of endogenous reactive oxygen species (ROS) production. In the present study, we aimed to clarify the effects of pharmacological PARP-1 inhibition on mitochondrial function and quality control processes. MAIN METHODS L-2286, a quinazoline-derivative PARP inhibitor, protects against cardiovascular remodeling and heart failure by favorable modulation of signaling routes. We examined the effects of PARP-1 inhibition on mitochondrial quality control processes and function in vivo and in vitro. Spontaneously hypertensive rats (SHRs) were treated with L-2286 or placebo. In the in vitro model, 150 μM H2O2 stress was applied on neonatal rat cardiomyocytes (NRCM). KEY FINDINGS PARP-inhibition prevented the development of left ventricular hypertrophy in SHRs. The interfibrillar mitochondrial network were less fragmented, the average mitochondrial size was bigger and showed higher cristae density compared to untreated SHRs. Dynamin related protein 1 (Drp1) translocation and therefore the fission of mitochondria was inhibited by L-2286 treatment. Moreover, L-2286 treatment increased the amount of fusion proteins (Opa1, Mfn2), thus preserving structural stability. PARP-inhibition also preserved the mitochondrial genome integrity. In addition, the mitochondrial biogenesis was also enhanced due to L-2286 treatment, leading to an overall increase in the ATP production and improvement in survival of stressed cells. SIGNIFICANCE Our results suggest that the modulation of mitochondrial dynamics and biogenesis can be a promising therapeutical target in hypertension-induced myocardial remodeling and heart failure.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Electrocardiography
- Glutathione/metabolism
- Hypertension/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/etiology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/ultrastructure
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Piperidines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Quinazolines/pharmacology
- Rats, Inbred SHR
- Rats, Wistar
- Rats
Collapse
Affiliation(s)
- K Ordog
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - O Horvath
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - K Eros
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Bruszt
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Sz Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
| | - D Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - N Kalman
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - B Radnai
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - L Deres
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - F Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, Budapest, Hungary
| | - K Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - R Halmosi
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary.
| |
Collapse
|
3
|
Zhu H, Fang Z, Chen J, Yang Y, Gan J, Luo L, Zhan X. PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:355-366. [PMID: 33531822 PMCID: PMC7846827 DOI: 10.2147/dmso.s291314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a metabolic disorder characterized by the accumulation of extracellular matrix (ECM). This study aims to investigate whether exists an interplay between poly (ADP-ribose) polymerase 1 (PARP-1) and sirtuin 1 (SIRT-1) in DN via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) signaling pathway. METHODS Eight-week-old male obese leptin-resistant (db/db) mice and nondiabetic control male C57BLKs/J (db/m) mice were used in this study. Body weight and blood glucose were evaluated after 6 h of fasting, which continues for 4 weeks. The kidney tissues were dissected for Western blot, immunofluorescence (IF) assay. Besides, PARP activity assay, MTT assay, NAD+ qualification, Western blot and IF were also performed to detect the level and relation of PARP-1 and SIRT-1 in mouse mesangial cells (MCs) with or without high glucose followed by inhibiting or elevating PARP-1 and SIRT-1, respectively. RESULTS Western blotting shows PARP-1 and ECM marker fibronectin (FN) are upregulated while SIRT-1 is downregulated in db/db mice (p<0.05) or in mouse MCs with high glucose (p<0.05), which are significantly restored by PARP-1 inhibitor (PJ34) (p<0.05) and SIRT-1 lentiviral transfected treatment (p<0.05), or worsened by SIRT-1 inhibitor EX527 (p<0.05). PJ34 treatment (p < 0.05) or SIRT-1 overexpression (p < 0.05) could increase PGC-1α and p-AMPK levels, concomitant with down expression of FN, however, were reversed in the presence of EX527 (p<0.05). DISCUSSION Our results suggest an important relationship between PARP-1 and SIRT-1 through AMPK-PGC-1α pathway, indicating a potential therapeutic method for DN.
Collapse
Affiliation(s)
- Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Zhi Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Jiehui Chen
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Yun Yang
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Jiacheng Gan
- Department of Nuclear Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Liang Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China
- Correspondence: Liang Luo Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China Tel/Fax +8613807979503 Email
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Xiaojiang Zhan Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China Tel/Fax +8613507919885 Email
| |
Collapse
|
4
|
Sayed MA, Eldahshan W, Abdelbary M, Pillai B, Althomali W, Johnson MH, Arbab AS, Ergul A, Fagan SC. Stroke promotes the development of brain atrophy and delayed cell death in hypertensive rats. Sci Rep 2020; 10:20233. [PMID: 33214598 PMCID: PMC7678843 DOI: 10.1038/s41598-020-75450-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major source of disability, affecting up to two thirds of stroke survivors with no available therapeutic options. The condition remains understudied in preclinical models due to its delayed presentation. Although hypertension is a leading risk factor for dementia, how ischemic stroke contributes to this neurodegenerative condition is unknown. In this study, we used a model of hypertension to study the development of PSCI and its mechanisms. Spontaneously hypertensive rats (SHR) were compared to normotensive rats and were subjected to 1-h middle cerebral artery occlusion or sham surgery. Novel object recognition, passive avoidance test and Morris water maze were used to assess cognition. In addition, brain magnetic resonance images were obtained 12-weeks post-stroke and tissue was collected for immunohistochemistry and protein quantification. Stroked animals developed impairment in long-term memory at 4-weeks post-stroke despite recovery from motor deficits, with hypertensive animals showing some symptoms of anhedonia. Stroked SHRs displayed grey matter atrophy and had a two-fold increase in apoptosis in the ischemic borderzone and increased markers of inflammatory cell death and DNA damage at 12 weeks post-stroke. This indicates that preexisting hypertension exacerbates the development of secondary neurodegeneration after stroke beyond its acute effects on neurovascular injury.
Collapse
Affiliation(s)
- Mohammed A Sayed
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Wael Eldahshan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Mahmoud Abdelbary
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
| | - Bindu Pillai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Waleed Althomali
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | | | | | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
5
|
Sandrini L, Ieraci A, Amadio P, Zarà M, Barbieri SS. Impact of Acute and Chronic Stress on Thrombosis in Healthy Individuals and Cardiovascular Disease Patients. Int J Mol Sci 2020; 21:ijms21217818. [PMID: 33105629 PMCID: PMC7659944 DOI: 10.3390/ijms21217818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Psychological stress induces different alterations in the organism in order to maintain homeostasis, including changes in hematopoiesis and hemostasis. In particular, stress-induced hyper activation of the autonomic nervous system and hypothalamic–pituitary–adrenal axis can trigger cellular and molecular alterations in platelets, coagulation factors, endothelial function, redox balance, and sterile inflammatory response. For this reason, mental stress is reported to enhance the risk of cardiovascular disease (CVD). However, contrasting results are often found in the literature considering differences in the response to acute or chronic stress and the health condition of the population analyzed. Since thrombosis is the most common underlying pathology of CVDs, the comprehension of the mechanisms at the basis of the association between stress and this pathology is highly valuable. The aim of this work is to give a comprehensive review of the studies focused on the role of acute and chronic stress in both healthy individuals and CVD patients, focusing on the cellular and molecular mechanisms underlying the relationship between stress and thrombosis.
Collapse
Affiliation(s)
- Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (P.A.); (M.Z.)
- Correspondence: (L.S.); (S.S.B.); Tel.: +39-02-58002021 (L.S. & S.S.B.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Sezione di Fisiologia e Farmacologia, University of Milan, 20133 Milan, Italy;
| | - Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (P.A.); (M.Z.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (P.A.); (M.Z.)
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (P.A.); (M.Z.)
- Correspondence: (L.S.); (S.S.B.); Tel.: +39-02-58002021 (L.S. & S.S.B.)
| |
Collapse
|
6
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
7
|
Cseh AM, Fabian Z, Quintana-Cabrera R, Szabo A, Eros K, Soriano ME, Gallyas F, Scorrano L, Sumegi B. PARP Inhibitor PJ34 Protects Mitochondria and Induces DNA-Damage Mediated Apoptosis in Combination With Cisplatin or Temozolomide in B16F10 Melanoma Cells. Front Physiol 2019; 10:538. [PMID: 31133874 PMCID: PMC6514236 DOI: 10.3389/fphys.2019.00538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
PARP-1 inhibition has recently been employed in both mono- and combination therapies in various malignancies including melanoma with both promising and contradicting results reported. Although deeper understanding of the underlying molecular mechanisms may help improving clinical modalities, the complex cellular effects of PARP inhibitors make disentangling of the mechanisms involved in combination therapies difficult. Here, we used two cytostatic agents used in melanoma therapies in combination with PARP inhibition to have an insight into cellular events using the B16F10 melanoma model. We found that, when used in combination with cisplatin or temozolomide, pharmacologic blockade of PARP-1 by PJ34 augmented the DNA-damaging and cytotoxic effects of both alkylating compounds. Interestingly, however, this synergism unfolds relatively slowly and is preceded by molecular events that are traditionally believed to support cell survival including the stabilization of mitochondrial membrane potential and morphology. Our data indicate that the PARP inhibitor PJ34 has, apparently, opposing effects on the mitochondrial structure and cell survival. While, initially, it stimulates mitochondrial fusion and hyperpolarization, hallmarks of mitochondrial protection, it enhances the cytotoxic effects of alkylating agents at later stages. These findings may contribute to the optimization of PARP inhibitor-based antineoplastic modalities.
Collapse
Affiliation(s)
- Anna Maria Cseh
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Department of Biology, University of Padova, Padua, Italy
| | - Zsolt Fabian
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztian Eros
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Luca Scorrano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Affiliation(s)
- Rhéure Alves-Lopes
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, United Kingdom
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, United Kingdom
| |
Collapse
|
9
|
Gong C, Yang L, Zhou J, Guo X, Zhuang Z. Possible role of PAPR-1 in protecting human HaCaT cells against cytotoxicity of SiO2 nanoparticles. Toxicol Lett 2017; 280:213-221. [DOI: 10.1016/j.toxlet.2017.07.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
|