1
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
2
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
3
|
Unterberger CJ, Maklakova VI, Lazar M, Arneson PD, Mcilwain SJ, Tsourkas PK, Hu R, Kopchick JJ, Swanson SM, Marker PC. GH Action in Prostate Cancer Cells Promotes Proliferation, Limits Apoptosis, and Regulates Cancer-related Gene Expression. Endocrinology 2022; 163:6564019. [PMID: 35383352 PMCID: PMC8995093 DOI: 10.1210/endocr/bqac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Previous studies investigating the effects of blocking the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in prostate cancer found no effects of the growth hormone receptor (GHR) antagonist, pegvisomant, on the growth of grafted human prostate cancer cells in vivo. However, human GHR is not activated by mouse GH, so direct actions of GH on prostate cancer cells were not evaluated in this context. The present study addresses the species specificity of GH-GHR activity by investigating GH actions in prostate cancer cell lines derived from a mouse Pten-deletion model. In vitro cell growth was stimulated by GH and reduced by pegvisomant. These in vitro GH effects were mediated at least in part by the activation of JAK2 and STAT5. When Pten-mutant cells were grown as xenografts in mice, pegvisomant treatment dramatically reduced xenograft size, and this was accompanied by decreased proliferation and increased apoptosis. RNA sequencing of xenografts identified 1765 genes upregulated and 953 genes downregulated in response to pegvisomant, including many genes previously implicated as cancer drivers. Further evaluation of a selected subset of these genes via quantitative reverse transcription-polymerase chain reaction determined that some genes exhibited similar regulation by pegvisomant in prostate cancer cells whether treatment was in vivo or in vitro, indicating direct regulation by GH via GHR activation in prostate cancer cells, whereas other genes responded to pegvisomant only in vivo, suggesting indirect regulation by pegvisomant effects on the host endocrine environment. Similar results were observed for a prostate cancer cell line derived from the mouse transgenic adenocarcinoma of the mouse prostate (TRAMP) model.
Collapse
Affiliation(s)
- Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Vilena I Maklakova
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Sean J Mcilwain
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Philippos K Tsourkas
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Rong Hu
- School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53792, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Steven M Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Correspondence: Paul C. Marker, PhD, Pharmaceutical Sciences Division, University of Wisconsin–Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Montagud A, Béal J, Tobalina L, Traynard P, Subramanian V, Szalai B, Alföldi R, Puskás L, Valencia A, Barillot E, Saez-Rodriguez J, Calzone L. Patient-specific Boolean models of signalling networks guide personalised treatments. eLife 2022; 11:e72626. [PMID: 35164900 PMCID: PMC9018074 DOI: 10.7554/elife.72626] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
Collapse
Affiliation(s)
- Arnau Montagud
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
| | - Jonas Béal
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Luis Tobalina
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Pauline Traynard
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Vigneshwari Subramanian
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
| | - Bence Szalai
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Semmelweis University, Faculty of Medicine, Department of PhysiologyBudapestHungary
| | | | | | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3BarcelonaSpain
- ICREA, Pg. Lluís Companys 23BarcelonaSpain
| | - Emmanuel Barillot
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen UniversityAachenGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Laurence Calzone
- Institut Curie, PSL Research UniversityParisFrance
- INSERM, U900ParisFrance
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational BiologyParisFrance
| |
Collapse
|
5
|
Fu Z, Jia B. Advances in the role of heat shock protein 90 in prostate cancer. Andrologia 2022; 54:e14376. [PMID: 35075667 DOI: 10.1111/and.14376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the most common tumours in adult men and heat shock proteins play an important biological function in prostate cancer as molecular chaperones involved in the pathogenesis, diagnosis, treatment and prognosis of a wide range of tumours. Among them, increased expression of HSP90, a member of the heat shock protein family, is associated with resistance to prostate cancer denervation and can promote tumour resistance, invasion and bone metastasis, thus making prostate cancer more difficult to treat. Therefore, targeting HSP90 in prostate cancer could be a promising strategy for oncology treatment. This paper reviews the structure and function of HSP90, HSP90-mediated denudation resistance in prostate cancer and HSP90-targeted antitumor therapy, with the aim of providing a new theoretical basis for prostate cancer treatment options in the clinical setting.
Collapse
Affiliation(s)
- Zheng Fu
- Guizhou Medical University, Guiyang, China
| | - Benzhong Jia
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Propylene Glycol Caprylate-Based Nanoemulsion Formulation of Plumbagin: Development and Characterization of Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3549061. [PMID: 35047632 PMCID: PMC8763502 DOI: 10.1155/2022/3549061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Plumbagin, a bioactive naphthoquinone, has demonstrated potent antitumor potential. However, plumbagin is a sparingly water-soluble compound; therefore, clinical translation requires and will be facilitated by the development of a new pharmaceutical formulation. We have generated an oil-in-water nanoemulsion formulation of plumbagin using a low-energy spontaneous emulsification process with propylene glycol caprylate (Capryol 90) as an oil phase and Labrasol/Kolliphor RH40 as surfactant and cosurfactant excipients. Formulation studies using Capryol 90/Labrasol/Kolliphor RH40 components, based on pseudoternary diagram and analysis of particle size distribution and polydispersity determined by dynamic light scattering (DLS), identified an optimized composition of excipients for nanoparticle formulation. The nanoemulsion loaded with plumbagin as an active pharmaceutical ingredient had an average hydrodynamic diameter of 30.9 nm with narrow polydispersity. The nanoemulsion exhibited long-term stability, as well as good retention of particle size in simulated physiological environments. Furthermore, plumbagin-loaded nanoemulsion showed an augmented cytotoxicity against prostate cancer cells PTEN-P2 in comparison to free drug. In conclusion, we generated a formulation of plumbagin with high loading drug capacity, robust stability, and scalable production. Novel Capryol 90-based nanoemulsion formulation of plumbagin demonstrated antiproliferative activity against prostate cancer cells, warranting thus further pharmaceutical development.
Collapse
|
7
|
Aqeel R, Srivastava N, Kushwaha P. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:283-294. [PMID: 34303336 DOI: 10.2174/1872210515666210720125717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the recent years, Micelles represent a promising carrier for the treatment and diagnosis of cancer. Architecturally, micelles are self-assembled nanosized colloidal aggregates prepared from amphiphilic surfactant with a hydrophobic core and hydrophilic shell. Such a composition makes them a potential carrier for delivery of hydrophobic anticancer drugs with in their core. METHODS Micelles have received increasing interest as an enhanced permeability and retention (EPR) targeted drug delivery systems for cancer treatment. Micelles can be modified to contribute various attractive properties, for instance, active targeting, stimuli-responsiveness. They have also proven their ability in drug targeting to tumor tissue, enhanced drug accumulation, drug stabilization, tissue penetration, prolong circulation, in vivo biocompatibility, biodegradability and reduced side effects. Micelles have displayed a vital role in multidrug delivery for cancer therapy. RESULTS AND DISCUSSION The aim of the present review is to provide an overview on the status of micellar nanoformulations for anticancer agents, including their pre-clinical and clinical researches. Emphasis is placed on presenting the newer strategies to enhance the therapeutic efficacy of anticancer drug at the target site. The type of co-polymers used and methods for the preparation of micelles are also highlighted in the paper.
Collapse
Affiliation(s)
- Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Nidhi Srivastava
- Herbal Medicinal Product Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, UP-226015, India
| | | |
Collapse
|
8
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
9
|
Chen S, Yang J, Gao X, Liu Q, Wang X, Guo Y, Liu R, Wang F. Different administration methods of endostar combined with second-line chemotherapy in advanced malignancies. Indian J Cancer 2020; 59:26-32. [PMID: 33402601 DOI: 10.4103/ijc.ijc_537_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background This study aimed to compare the therapeutic efficacy and the side effects of different endostar administration methods in patients with advanced malignancy who underwent second-line chemotherapy. Methods 98 patients with advanced malignancies were divided into 2 groups based on the delivery methods of endostar, including drip intravenous administration of endostar (DE) group and continuous intravenous administration of endostar (CE) group. Response rate (RR), disease control rate (DCR), and quality of life (QOL) of the patients were examined to evaluate the therapeutic efficacy, and toxicity reactions were analyzed to evaluate the adverse effects. Results Compared with the DE group, the therapeutic efficacy of CE has been slightly improved, but the difference did not reach statistical significance (P > 0.05). Additionally, no different incidence rate was observed in toxic reactions, including leukopenia, thrombocytopenia, nausea and vomiting, diarrhea, and hepatic function damage, between the DE and CE groups (P > 0.05). Conclusion In conclusion, no significant difference was observed between the traditional intravenous drip of endostar group and the intravenous drip followed by continuous pumping of endostar group in the patients with advanced malignancies.
Collapse
Affiliation(s)
- Shaoping Chen
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Jianmei Yang
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Xin Gao
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Qiang Liu
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Xunguo Wang
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Yanchun Guo
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Ruibao Liu
- Department of Oncology, Dongying People's Hospital, Shandong, China
| | - Fang Wang
- Department of Oncology, Dongying People's Hospital, Shandong, China
| |
Collapse
|
10
|
Eftekhari S, Montazeri H, Tarighi P. Synergistic anti-tumor effects of Liraglutide, a glucagon-like peptide-1 receptor agonist, along with Docetaxel on LNCaP prostate cancer cell line. Eur J Pharmacol 2020; 878:173102. [DOI: 10.1016/j.ejphar.2020.173102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
|
11
|
Wegner KA, Mueller BR, Unterberger CJ, Avila EJ, Ruetten H, Turco AE, Oakes SR, Girardi NM, Halberg RB, Swanson SM, Marker PC, Vezina CM. Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. J Pathol 2019; 250:231-242. [PMID: 31674011 DOI: 10.1002/path.5363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
We genetically engineered expression of an activated form of P110 alpha, the catalytic subunit of PI3K, in mouse prostate epithelium to create a mouse model of direct PI3K activation (Pbsn-cre4Prb;PI3KGOF/+ ). We hypothesized that direct activation would cause rapid neoplasia and cancer progression. Pbsn-cre4Prb;PI3KGOF/+ mice developed widespread prostate intraepithelial hyperplasia, but stromal invasion was limited and overall progression was slower than anticipated. However, the model produced profound and progressive stromal remodeling prior to explicit epithelial neoplasia. Increased stromal cellularity and inflammatory infiltrate were evident as early as 4 months of age and progressively increased through 12 months of age, the terminal endpoint of this study. Prostatic collagen density and phosphorylated SMAD2-positive prostatic stromal cells were expansive and accumulated with age, consistent with pro-fibrotic TGF-β pathway activation. Few reported mouse models accumulate prostate-specific collagen to the degree observed in Pbsn-cre4Prb;PI3KGOF/+ . Our results indicate a signaling process beginning with prostatic epithelial PI3K and TGF-β signaling that drives prostatic stromal hypertrophy and collagen accumulation. These mice afford a unique opportunity to explore molecular mechanisms of prostatic collagen accumulation that is relevant to cancer progression, metastasis, inflammation and urinary dysfunction. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett R Mueller
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Unterberger
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Enrique J Avila
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas M Girardi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051087. [PMID: 30832393 PMCID: PMC6429419 DOI: 10.3390/ijms20051087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4′-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.
Collapse
|
13
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Talaei S, Mellatyar H, Pilehvar-Soltanahmadi Y, Asadi A, Akbarzadeh A, Zarghami N. 17-Allylamino-17-demethoxygeldanamycin loaded PCL/PEG nanofibrous scaffold for effective growth inhibition of T47D breast cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|