1
|
Aburajab R, Pospiech M, Alachkar H. Profiling the epigenetic landscape of the antigen receptor repertoire: the missing epi-immunogenomics data. Nat Methods 2023; 20:477-481. [PMID: 36522502 PMCID: PMC11058354 DOI: 10.1038/s41592-022-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-resolution sequencing methods that capture the epigenetic landscape within the T cell receptor (TCR) gene loci are pivotal for a fundamental understanding of the epigenetic regulatory mechanisms of the TCR repertoire. In our opinion, filling the gaps in our understanding of the epigenetic mechanisms regulating the TCR repertoire will benefit the development of strategies that can modulate the TCR repertoire composition by leveraging the dynamic nature of epigenetic modifications.
Collapse
Affiliation(s)
- Rayyan Aburajab
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Jin G, Chang Y, Harris J, Bao X. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective. Cells Tissues Organs 2023; 212:439-467. [PMID: 36599319 PMCID: PMC10318121 DOI: 10.1159/000528838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
The past decade has witnessed significant advances in cancer immunotherapy, particularly through the adoptive transfer of engineered T cells in treating advanced leukemias and lymphomas. Despite these excitements, challenges remain with scale, cost, and ensuring quality control of engineered immune cells, including chimeric antigen receptor T, natural killer cells, and macrophages. The advent of human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, has transformed immunotherapy by providing a scalable, off-the-shelf source of any desired immune cells for basic research, translational studies, and clinical interventions. The tractability of hPSCs for gene editing could also generate homogenous, universal cellular products with custom functionality for individual or combinatory therapeutic applications. This review will explore various immune cell types whose directed differentiation from hPSCs has been achieved and recently adapted for translational immunotherapy and feature forward-looking bioengineering techniques shaping the future of the stem cell field.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jackson Harris
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
Campos-Laborie FJ, Risueño A, Ortiz-Estévez M, Rosón-Burgo B, Droste C, Fontanillo C, Loos R, Sánchez-Santos JM, Trotter MW, De Las Rivas J. DECO: decompose heterogeneous population cohorts for patient stratification and discovery of sample biomarkers using omic data profiling. Bioinformatics 2020; 35:3651-3662. [PMID: 30824909 PMCID: PMC6761977 DOI: 10.1093/bioinformatics/btz148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 02/09/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Motivation Patient and sample diversity is one of the main challenges when dealing with clinical cohorts in biomedical genomics studies. During last decade, several methods have been developed to identify biomarkers assigned to specific individuals or subtypes of samples. However, current methods still fail to discover markers in complex scenarios where heterogeneity or hidden phenotypical factors are present. Here, we propose a method to analyze and understand heterogeneous data avoiding classical normalization approaches of reducing or removing variation. Results DEcomposing heterogeneous Cohorts using Omic data profiling (DECO) is a method to find significant association among biological features (biomarkers) and samples (individuals) analyzing large-scale omic data. The method identifies and categorizes biomarkers of specific phenotypic conditions based on a recurrent differential analysis integrated with a non-symmetrical correspondence analysis. DECO integrates both omic data dispersion and predictor–response relationship from non-symmetrical correspondence analysis in a unique statistic (called h-statistic), allowing the identification of closely related sample categories within complex cohorts. The performance is demonstrated using simulated data and five experimental transcriptomic datasets, and comparing to seven other methods. We show DECO greatly enhances the discovery and subtle identification of biomarkers, making it especially suited for deep and accurate patient stratification. Availability and implementation DECO is freely available as an R package (including a practical vignette) at Bioconductor repository (http://bioconductor.org/packages/deco/). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- F J Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - A Risueño
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - M Ortiz-Estévez
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - B Rosón-Burgo
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - C Droste
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - C Fontanillo
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - R Loos
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - J M Sánchez-Santos
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| | - M W Trotter
- Celgene Institute for Translational Research Europe (CITRE), Parque Científico y Tecnológico Cartuja 93, Sevilla, Spain
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain
| |
Collapse
|
5
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|
6
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|