1
|
Dicks MD, Rose LM, Russell RA, Bowman LA, Graham C, Jimenez-Guardeño JM, Doores KJ, Malim MH, Draper SJ, Howarth M, Biswas S. Modular capsid decoration boosts adenovirus vaccine-induced humoral immunity against SARS-CoV-2. Mol Ther 2022; 30:3639-3657. [PMID: 35949171 PMCID: PMC9364715 DOI: 10.1016/j.ymthe.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Matthew D.J. Dicks
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Corresponding author: Matthew D. J. Dicks, SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK.
| | - Louisa M. Rose
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Rebecca A. Russell
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Lesley A.H. Bowman
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jose M. Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Simon J. Draper
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark Howarth
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sumi Biswas
- SpyBiotech Ltd, 7600 The Quorum, Oxford Business Park North, Oxford, OX4 2JZ, UK,The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
2
|
Saeland E, van der Fits L, Bolder R, Heemskerk-van der Meer M, Drijver J, van Polanen Y, Vaneman C, Tettero L, Serroyen J, Schuitemaker H, Callendret B, Langedijk JPM, Zahn RC. Immunogenicity and protective efficacy of adenoviral and subunit RSV vaccines based on stabilized prefusion F protein in pre-clinical models. Vaccine 2021; 40:934-944. [PMID: 34973849 DOI: 10.1016/j.vaccine.2021.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.
Collapse
Affiliation(s)
| | | | - Renske Bolder
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Joke Drijver
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Jan Serroyen
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| |
Collapse
|
3
|
Sadoff J, De Paepe E, Haazen W, Omoruyi E, Bastian AR, Comeaux C, Heijnen E, Strout C, Schuitemaker H, Callendret B. Safety and Immunogenicity of the Ad26.RSV.preF Investigational Vaccine Coadministered With an Influenza Vaccine in Older Adults. J Infect Dis 2020; 223:699-708. [DOI: 10.1093/infdis/jiaa409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Respiratory syncytial virus (RSV) and influenza cause significant disease burden in older adults. Overlapping RSV and influenza seasonality presents the opportunity to coadminister vaccines for both infections. This study assessed coadministration of the investigational vaccine, Ad26.RSV.preF, an adenovirus serotype 26 (Ad26) vector encoding RSV F protein stabilized in its prefusion conformation (pre-F), with a seasonal influenza vaccine in older adults.
Methods
In this phase 2a, double-blind, placebo-controlled study, 180 adults aged ≥60 years received Ad26.RSV.preF plus Fluarix on day 1 and placebo on day 29, or placebo plus Fluarix on day 1 and Ad26.RSV.preF on day 29 (control).
Results
The coadministration regimen had an acceptable tolerability profile. Reactogenicity was generally higher after Ad26.RSV.preF versus Fluarix, but symptoms were generally transient and mild or moderate. At 28 days after the first vaccination, the upper confidence intervals of the hemagglutination inhibition antibody geometric mean ratio (control/coadministration) for all influenza strains were <2, demonstrating noninferiority. Robust neutralizing and binding antibody responses to RSV A2 were observed in both groups.
Conclusions
Coadministration of Fluarix with Ad26.RSV.preF vaccine had an acceptable safety profile and showed no evidence of interference in immune response. The results are compatible with simultaneous seasonal vaccination with both vaccines.
Clinical Trials Registration
NCT03339713.
Collapse
Affiliation(s)
- Jerald Sadoff
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | | | | | | | | | - Cynthia Strout
- Coastal Carolina Research Center, Mount Pleasant, South Carolina
| | | | | |
Collapse
|
4
|
Fusion of Large Polypeptides to Human Adenovirus Type 5 Capsid Protein IX Can Compromise Virion Stability and DNA Packaging Capacity. J Virol 2020; 94:JVI.01112-20. [PMID: 32522855 DOI: 10.1128/jvi.01112-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
The human adenovirus (HAdV) protein IX (pIX) is a minor component of the capsid that acts in part to stabilize the hexon-hexon interactions within the mature capsid. Virions lacking pIX have a reduced DNA packaging capacity and exhibit thermal instability. More recently, pIX has been developed as a platform for presentation of large polypeptides, such as fluorescent proteins or large targeting ligands, on the viral capsid. It is not known whether such modifications affect the natural ability of pIX to stabilize the HAdV virion. In this study, we show that addition of large polypeptides to pIX does not alter the natural stability of virions containing sub-wild-type-sized genomes. However, similar virions containing wild-type-sized genomes tend to genetically rearrange, likely due to selective pressure caused by virion instability as a result of compromised pIX function.IMPORTANCE Human adenovirus capsid protein IX (pIX) is involved in stabilizing the virion but has also been developed as a platform for presentation of various polypeptides on the surface of the virion. Whether such modifications affect the ability of pIX to stabilize the virion is unknown. We show that addition of large polypeptides to pIX can reduce both the DNA packaging capacity and the heat stability of the virion, which provides important guidance for the design of pIX-modified vectors.
Collapse
|
5
|
Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 2019; 4:54. [PMID: 31885877 PMCID: PMC6925274 DOI: 10.1038/s41541-019-0150-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.
Collapse
|
6
|
van Winkel CAJ, Moreno A, Curiel DT. Capsid-Incorporation Strategy To Display Antigens for an Alternative Adenoviral Vector Vaccine Approach. Mol Pharm 2018; 15:5446-5453. [PMID: 30359030 DOI: 10.1021/acs.molpharmaceut.8b00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The adenovirus (Ad) is widely used as a vaccine because of its ability to induce a cellular and humoral immune response. In addition, human clinical trials have validated the safety and efficacy of Ad as a vaccine vector. The traditional approach for employing the adenovirus as vaccine is to configure the antigen genes into the expression cassette of the Ad genome. An alternative method for inducing an immune response is the "capsid-incorporation" strategy. This strategy is based upon the incorporation of proteins or peptides into the capsid proteins. This review will focus on the established uses of this approach as well as highlighting the new developments regarding the capsid-incorporation strategy.
Collapse
Affiliation(s)
- Claudia A J van Winkel
- Cancer Biology Division, Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States.,Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen 9700 AB , The Netherlands
| | - Alberto Moreno
- Emory Vaccine Center and Yerkes National Primate Research Center , Emory University , Atlanta , Georgia 30322 , United States.,Division of Infectious Diseases, Department of Medicine , Emory University , Atlanta , Georgia 30322 , United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| |
Collapse
|
7
|
Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018; 6:biomedicines6030081. [PMID: 30049954 PMCID: PMC6165093 DOI: 10.3390/biomedicines6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Adenoviral vectored vaccines against infectious diseases are currently in clinical trials due to their capacity to induce potent antigen-specific B- and T-cell immune responses. Heterologous prime-boost vaccination with adenoviral vector and, for example, adjuvanted protein-based vaccines can further enhance antigen-specific immune responses. Although leading to potent immune responses, these heterologous prime-boost regimens may be complex and impact manufacturing costs limiting efficient implementation. Typically, adenoviral vectors are engineered to genetically encode a transgene in the E1 region and utilize the host cell machinery to express the encoded antigen and thereby induce immune responses. Similarly, adenoviral vectors can be engineered to display foreign immunogenic peptides on the capsid-surface by insertion of antigens in capsid proteins hexon, fiber and protein IX. The ability to use adenoviral vectors as antigen-display particles, with or without using the genetic vaccine function, greatly increases the versatility of the adenoviral vector for vaccine development. This review describes the application of adenoviral capsid antigen-display vaccine vectors by focusing on their distinct advantages and possible limitations in vaccine development.
Collapse
|
8
|
Adenovirus based HPV L2 vaccine induces broad cross-reactive humoral immune responses. Vaccine 2018; 36:4462-4470. [DOI: 10.1016/j.vaccine.2018.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
|
9
|
Matteson NL, Barry MA, Reddy VS. Structure-based assessment of protein-protein interactions and accessibility of protein IX in adenoviruses with implications for antigen display. Virology 2018; 516:102-107. [PMID: 29331865 DOI: 10.1016/j.virol.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/28/2022]
Abstract
The exterior minor protein IX of adenoviruses (AdVs) is a frequent target of attachment of antigens and the modified AdVs are being used as potent vaccine platforms. The organization of protein IX is disticntly different between human adenoviruses (HAdVs) and non-HAdVs. The analysis of solvent accessibility, based on the near atomic resolution structures, suggests that the C-terminal residues of IX are more accessible in non-HAdVs (e.g., bovine adenovirus) than in HAdVs. Although the C-terminal fusions of IX are displayed on the capsid surface, they could disrupt the formation of tetrameric coiled-coils (4-HLXB) in HAdVs due to steric hinderance, thereby potentially affecting the capsid stability. Importantly, the parallel-antiparallel arrangement of helices seen in the 4-HLXB is not condusive for IX C-terminal fusions in HAdVs. In contrast, the parallel trimeric C-terminal coiled-coils in non-HAdVs are unlikely to be affected by the attachment of antigens and more efficiently displayed on the AdV surface.
Collapse
Affiliation(s)
- Nathaniel L Matteson
- Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA; Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology 2018; 153:1-9. [PMID: 28869761 PMCID: PMC5721250 DOI: 10.1111/imm.12829] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Since the development of vaccinia virus as a vaccine vector in 1984, the utility of numerous viruses in vaccination strategies has been explored. In recent years, key improvements to existing vectors such as those based on adenovirus have led to significant improvements in immunogenicity and efficacy. Furthermore, exciting new vectors that exploit viruses such as cytomegalovirus (CMV) and vesicular stomatitis virus (VSV) have emerged. Herein, we summarize these recent developments in viral vector technologies, focusing on novel vectors based on CMV, VSV, measles and modified adenovirus. We discuss the potential utility of these exciting approaches in eliciting protection against infectious diseases.
Collapse
Affiliation(s)
- Ian R. Humphreys
- Institute of Infection and Immunity/Systems Immunity University Research InstituteCardiff UniversityCardiffUK
- The Wellcome Trust Sanger InstituteHinxtonUK
| | | |
Collapse
|
11
|
Flint S. Viral Moulds and Cement: How Interactions among Human Adenovirus Hexons and Their Protein IX Cement May Buttress Human Adenovirus Particles. J Mol Biol 2017; 429:2752-2754. [DOI: 10.1016/j.jmb.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
|