1
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Boyd P, Merkatz R, Variano B, Malcolm RK. The ins and outs of drug-releasing vaginal rings: a literature review of expulsions and removals. Expert Opin Drug Deliv 2020; 17:1519-1540. [DOI: 10.1080/17425247.2020.1798927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Boyd
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Ruth Merkatz
- Population Council, One Dag Hammarskjold Plaza, New York, NY, USA
| | - Bruce Variano
- Population Council, One Dag Hammarskjold Plaza, New York, NY, USA
| | | |
Collapse
|
3
|
Raman R, Hua T, Gwynne D, Collins J, Tamang S, Zhou J, Esfandiary T, Soares V, Pajovic S, Hayward A, Langer R, Traverso G. Light-degradable hydrogels as dynamic triggers for gastrointestinal applications. SCIENCE ADVANCES 2020; 6:eaay0065. [PMID: 32010768 PMCID: PMC6968934 DOI: 10.1126/sciadv.aay0065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.
Collapse
Affiliation(s)
- Ritu Raman
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tiffany Hua
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Declan Gwynne
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joy Collins
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siddartha Tamang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianlin Zhou
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tina Esfandiary
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vance Soares
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simo Pajovic
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alison Hayward
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Smart Freeze-Dried Bigels for the Prevention of the Sexual Transmission of HIV by Accelerating the Vaginal Release of Tenofovir during Intercourse. Pharmaceutics 2019; 11:pharmaceutics11050232. [PMID: 31086015 PMCID: PMC6571877 DOI: 10.3390/pharmaceutics11050232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 01/31/2023] Open
Abstract
Sub-Saharan African women are still at risk from the human immunodeficiency virus (HIV), and sex with men is the main route of transmission. Vaginal formulations containing antiretroviral drugs are promising tools to give women the power to protect themselves. The aim of this work was to obtain freeze-dried bigels containing pectin, chitosan, or hypromellose for the vaginal controlled release of Tenofovir, which is accelerated in the presence of semen. Nine batches of bigels were formulated using different proportions of these polymers in the hydrogel (1, 2, and 3% w/w). The bigels obtained were freeze-dried and then underwent hardness and deformability, mucoadhesion, swelling, and drug release tests, the last two in simulated vaginal fluid (SVF) and SVF/simulated seminal fluid (SSF) mixture. The formulation containing 3% pectin (fd3P) has the highest values for hardness, resistance to deformation, and good mucoadhesivity. Its swelling is conditioned by the pH of the medium, which is responsive to the controlled release of Tenofovir in SVF, with the fastest release in the SVF/SSF mixture. fd3P would be an interesting smart microbicidal system to allow faster release of Tenofovir in the presence of semen, and thus increase women’s ability to protect themselves from the sexual transmission of HIV.
Collapse
|