1
|
Khin MHW, Obi S. Numerical Study on the Hydrodynamic Performance of a Flexible Caudal Fin with Different Trailing-Edge Shapes. Biomimetics (Basel) 2024; 9:445. [PMID: 39056886 PMCID: PMC11274942 DOI: 10.3390/biomimetics9070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
This paper presents a three-dimensional fluid-structure-coupled simulation of a flexible caudal fin with different trailing-edge shapes. The influences of caudal-fin shape on hydrodynamic performance are investigated by comparing the results of a simplified model of a square caudal fin with forked and deeply forked caudal fins under a wider range of non-dimensional flapping frequency, 0.6 < f* < 1.5, where f* is the ratio of flapping frequency to the natural frequency of each caudal fin, i.e., f* = f/fn. The leading edge of each caudal fin is forced to oscillate vertically in a water tank with zero free-stream conditions. The numerical results show that the amount of forking in the geometry of the caudal fin has significant effects on its hydrodynamic performance. A comparison of thrust coefficients shows that the square caudal fin has a greater thrust coefficient in the non-dimensional frequency range of 0.6 < f* < 1.2, while the deeply forked caudal fin generates higher thrust when 1.2 < f* < 1.5. In terms of propulsive efficiency, the square caudal fin is more efficient when 0.6 < f* < 0.9, while the propulsive efficiency of a deeply forked caudal fin is significantly enhanced when 0.9 < f* < 1.5. Based on our results, the deeply forked caudal fin has greater thrust coefficients and a higher propulsive efficiency in a higher frequency range than the natural frequency of each caudal fin. The thrust characteristics and flow fields around each caudal fin are investigated in detail.
Collapse
Affiliation(s)
- May Hlaing Win Khin
- Department of Mechanical Engineering, West Yangon Technological University, Yangon 11401, Myanmar
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Shinnosuke Obi
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
2
|
Zhang Z, Wang Q, Zhang S. Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles. Biomimetics (Basel) 2024; 9:79. [PMID: 38392125 PMCID: PMC10886954 DOI: 10.3390/biomimetics9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Biomimetics, which draws inspiration from nature, has emerged as a key approach in the development of underwater vehicles. The integration of this approach with computational fluid dynamics (CFD) has further propelled research in this field. CFD, as an effective tool for dynamic analysis, contributes significantly to understanding and resolving complex fluid dynamic problems in underwater vehicles. Biomimetics seeks to harness innovative inspiration from the biological world. Through the imitation of the structure, behavior, and functions of organisms, biomimetics enables the creation of efficient and unique designs. These designs are aimed at enhancing the speed, reliability, and maneuverability of underwater vehicles, as well as reducing drag and noise. CFD technology, which is capable of precisely predicting and simulating fluid flow behaviors, plays a crucial role in optimizing the structural design of underwater vehicles, thereby significantly enhancing their hydrodynamic and kinematic performances. Combining biomimetics and CFD technology introduces a novel approach to underwater vehicle design and unveils broad prospects for research in natural science and engineering applications. Consequently, this paper aims to review the application of CFD technology in the biomimicry of underwater vehicles, with a primary focus on biomimetic propulsion, biomimetic drag reduction, and biomimetic noise reduction. Additionally, it explores the challenges faced in this field and anticipates future advancements.
Collapse
Affiliation(s)
- Zhijun Zhang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Qigan Wang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Shujun Zhang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
- School of Computing and Engineering, Gloucestershire University, Cheltenham GL50 2HR, UK
| |
Collapse
|
3
|
Macías MM, García-Ortiz JH, Oliveira TF, Brasil Junior ACP. Numerical Investigation of Dimensionless Parameters in Carangiform Fish Swimming Hydrodynamics. Biomimetics (Basel) 2024; 9:45. [PMID: 38248619 PMCID: PMC11154449 DOI: 10.3390/biomimetics9010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Research into how fish and other aquatic organisms propel themselves offers valuable natural references for enhancing technology related to underwater devices like vehicles, propellers, and biomimetic robotics. Additionally, such research provides insights into fish evolution and ecological dynamics. This work carried out a numerical investigation of the most relevant dimensionless parameters in a fish swimming environment (Reynolds Re, Strouhal St, and Slip numbers) to provide valuable knowledge in terms of biomechanics behavior. Thus, a three-dimensional numerical study of the fish-like lambari, a BCF swimmer with carangiform kinematics, was conducted using the URANS approach with the k-ω-SST transition turbulence closure model in the OpenFOAM software. In this study, we initially reported the equilibrium Strouhal number, which is represented by St∗, and its dependence on the Reynolds number, denoted as Re. This was performed following a power-law relationship of St∝Re(-α). We also conducted a comprehensive analysis of the hydrodynamic forces and the effect of body undulation in fish on the production of swimming drag and thrust. Additionally, we computed propulsive and quasi-propulsive efficiencies, as well as examined the influence of the Reynolds number and Slip number on fish performance. Finally, we performed a vortex dynamics analysis, in which different wake configurations were revealed under variations of the dimensionless parameters St, Re, and Slip. Furthermore, we explored the relationship between the generation of a leading-edge vortex via the caudal fin and the peak thrust production within the motion cycle.
Collapse
Affiliation(s)
- Marianela Machuca Macías
- Department of Mechanical Engineering and Industrial Design, Faculty of Engineering, University of Cadiz, Puerto Real, 11519 Cadiz, Spain;
| | - José Hermenegildo García-Ortiz
- Department of Mechanical Engineering and Industrial Design, Faculty of Engineering, University of Cadiz, Puerto Real, 11519 Cadiz, Spain;
| | - Taygoara Felamingo Oliveira
- Laboratory of Energy and Environment, Department of Mechanical Engineering, University of Brasilia, Brasília 70910, DF, Brazil; (T.F.O.); (A.C.P.B.J.)
| | - Antonio Cesar Pinho Brasil Junior
- Laboratory of Energy and Environment, Department of Mechanical Engineering, University of Brasilia, Brasília 70910, DF, Brazil; (T.F.O.); (A.C.P.B.J.)
| |
Collapse
|
4
|
Paniccia D, Padovani L, Graziani G, Lugni C, Piva R. How Free Swimming Fosters the Locomotion of a Purely Oscillating Fish-like Body. Biomimetics (Basel) 2023; 8:401. [PMID: 37754152 PMCID: PMC10526200 DOI: 10.3390/biomimetics8050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
The recoil motions in free swimming, given by lateral and angular rigid motions due to the interaction with the surrounding water, are of great importance for a correct evaluation of both the forward locomotion speed and efficiency of a fish-like body. Their contribution is essential for calculating the actual movements of the body rear end whose prominent influence on the generation of the proper body deformation was established a long time ago. In particular, the recoil motions are found here to promote a dramatic improvement of the performance when damaged fishes, namely for a partial functionality of the tail or even for its complete loss, are considered. In fact, the body deformation, which turns out to become oscillating and symmetric in the extreme case, is shown to recover in the water frame a kind of undulation leading to a certain locomotion speed though at the expense of a large energy consumption. There has been a deep interest in the subject since the infancy of swimming studies, and a revival has recently arisen for biomimetic applications to robotic fish-like bodies. We intend here to apply a theoretical impulse model to the oscillating fish in free swimming as a suitable test case to strengthen our belief in the beneficial effects of the recoil motions. At the same time, we intend to exploit the linearity of the model to detect from the numerical simulations the intrinsic physical reasons related to added mass and vorticity release behind the experimental observations.
Collapse
Affiliation(s)
- Damiano Paniccia
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
- Leonardo S.p.A., Piazza Monte Grappa 4, 00195 Rome, Italy
| | - Luca Padovani
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
- CNR-INM, Marine Technology Research Institute, 00128 Rome, Italy;
| | - Giorgio Graziani
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
| | - Claudio Lugni
- CNR-INM, Marine Technology Research Institute, 00128 Rome, Italy;
- Marine Technology Department, NTNU, NO-7491 Trondheim, Norway
| | - Renzo Piva
- Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy; (D.P.); (L.P.); (R.P.)
| |
Collapse
|
5
|
Bioinspired Propulsion System for a Thunniform Robotic Fish. Biomimetics (Basel) 2022; 7:biomimetics7040215. [PMID: 36546915 PMCID: PMC9775513 DOI: 10.3390/biomimetics7040215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The paper describes a bioinspired propulsion system for a robotic fish model. The system is based on a combination of an elastic chord with a tail fin fixed on it. The tail fin is connected to a servomotor by two symmetric movable thrusts simulating muscle contractions. The propulsion system provides the oscillatory tail movement with controllable amplitude and frequency. Tail oscillations translate into the movement of the robotic fish implementing the thunniform principle of locomotion. The shape of the body and the tail fin of the robotic fish were designed using a computational model simulating a virtual body in an aquatic medium. A prototype of a robotic fish was constructed and tested in experimental conditions. Dependencies of fish velocity on the dynamic characteristics of tail oscillations were analyzed. In particular, it was found that the robot's speed increased as the frequency of tail fin oscillations grew. We also found that for fixed frequencies, an increase in the oscillation amplitude lead to an increase in the swimming speed only up to a certain threshold. Further growth of the oscillation amplitude lead to a weak increase in speed at higher energy costs.
Collapse
|
6
|
Paniccia D, Padovani L, Graziani G, Piva R. Locomotion performance for oscillatory swimming in free mode. BIOINSPIRATION & BIOMIMETICS 2022; 18:015004. [PMID: 36322994 DOI: 10.1088/1748-3190/ac9fb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Oscillatory swimming of a fishlike body, whose motion is essentially promoted by the flapping tail, has been studied almost exclusively in axial mode under an incoming uniform stream or, more recently, self-propelled under a virtual body resistance. Obviously, both approaches do not consider the unavoidable recoil motions of the real body which have to be necessarily accounted for in a design procedure for technological means. Actually, once combined with the prescribed kinematics of the tail, the recoil motions lead to a remarkable improvement on the resulting swimming performance. An inviscid impulse model, linear in both potential and vortical contributions, is a proper tool to obtain a deeper comprehension of the physical events with respect to more elaborated flow interaction models. In fact, at a first look, the numerical results seem to be quite entangled, since their trends in terms of the main flapping parameters are not easy to be identified and a fair interpretation is obtained by means of the model capability to separate the effects of added mass and vortex shedding. Specifically, a prevailing dependence of the potential contribution on the heave amplitude and of the vortical contribution on the pitch amplitude is instrumental to unravel their combined action. A further aid for a proper interpretation of the data is provided by accounting separately for a geometrical component of the recoil which is expected to follow from the annihilation of any spurious rigid motion in case no fluid interactions occur. The above detailed decomposition of the recoil motions shows, through the numerical results, how the single components are going to influence the main flapping parameters and the locomotion performance as a guide for the design of biomimetic swimmers.
Collapse
Affiliation(s)
- D Paniccia
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy
| | - L Padovani
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy
| | - G Graziani
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy
| | - R Piva
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Zhang JD, Sung HJ, Huang WX. Hydrodynamic interaction of dorsal fin and caudal fin in swimming tuna. BIOINSPIRATION & BIOMIMETICS 2022; 17:066004. [PMID: 35896094 DOI: 10.1088/1748-3190/ac84b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Tuna, which are known for high-performance swimming, possess a large crescent dorsal fin (DF) and a caudal fin (CF) that differ from those of other fishes. The hydrodynamic interaction between the DF and CF in tuna, which are represented by two tandem 3D flapping plates, is numerically explored in the present study. Hydrodynamic properties and wake structures of the models with and without a DF are compared to investigate the effects of the DF. The thrust on the CF is substantially enhanced by the DF, whereas the force on the DF is not affected by the CF. The constructive interaction between the leading-edge vortex (LEV) on the CF and the vortices shed from the dorsal fin (DFVs) is identified from 3D wake topology and 2D vorticity distributions. The circulation of spanwise vorticity quantitatively reveals that the LEV on the CF is strengthened by the same-signed DFV. The effect of the flapping phase of the CF is examined. The DF-CF interaction is sensitive to the flapping phase at a short spacing, whereas a long spacing between the two fins enables a robust constructive interaction in tuna swimming. A systematic study is carried out to explore the effects of the Strouhal number (St) and the Reynolds number (Re) on the interaction of the fins. The enhancement of thrust due to the DF is diminished at St = 0.63, whereas the Re does not substantially influence the constructive DF-CF interaction.
Collapse
Affiliation(s)
- Jun-Duo Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hyung Jin Sung
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Wei-Xi Huang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
Changes in rays' swimming stability due to the phase difference between left and right pectoral fin movements. Sci Rep 2022; 12:2362. [PMID: 35149702 PMCID: PMC8837794 DOI: 10.1038/s41598-022-05317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Swimming motions of rays that swim using undulation locomotion are not always symmetrical; there may be a phase difference between the left and right pectoral fins. However, few studies on the swimming of rays have mentioned left and right pectoral fin movements. Moreover, the effects of movements of the left and right pectoral fins on swimming have not been clarified. This paper describes a computational study of phase differences of pectoral fin movements in the swimming of rays with the validity of fluid analysis methods. The movement and shape of the ray were made based on previous biological research and pictures. An overset grid was used to reproduce the ray’s complex motions. The analysis was performed under four phase difference conditions: 0 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T is the period), 0.25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T, 0.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T, and 0.75 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T$$\end{document}T. The results show that a phase difference between the left and right pectoral fin movements affects swimming stability and maneuverability but not propulsive efficiency. We suggest that the phase difference in pectoral fin movements is essential for the swimming of rays, and rays adjust the phase difference between the movement of the left and right pectoral fins to suit their purpose.
Collapse
|
9
|
Convergence of undulatory swimming kinematics across a diversity of fishes. Proc Natl Acad Sci U S A 2021; 118:2113206118. [PMID: 34853171 DOI: 10.1073/pnas.2113206118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.
Collapse
|
10
|
Paniccia D, Padovani L, Graziani G, Piva R. The performance of a flapping foil for a self-propelled fishlike body. Sci Rep 2021; 11:22297. [PMID: 34785731 PMCID: PMC8595632 DOI: 10.1038/s41598-021-01730-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
Several fish species propel by oscillating the tail, while the remaining part of the body essentially contributes to the overall drag. Since in this case thrust and drag are in a way separable, most attention was focused on the study of propulsive efficiency for flapping foils under a prescribed stream. We claim here that the swimming performance should be evaluated, as for undulating fish whose drag and thrust are severely entangled, by turning to self-propelled locomotion to find the proper speed and the cost of transport for a given fishlike body. As a major finding, the minimum value of this quantity corresponds to a locomotion speed in a range markedly different from the one associated with the optimal efficiency of the propulsor. A large value of the feathering parameter characterizes the minimum cost of transport while the optimal efficiency is related to a large effective angle of attack. We adopt here a simple two-dimensional model for both inviscid and viscous flows to proof the above statements in the case of self-propelled axial swimming. We believe that such an easy approach gives a way for a direct extension to fully free swimming and to real-life configurations.
Collapse
Affiliation(s)
- Damiano Paniccia
- Department of Mechanical and Aerospace Engineering, University of Rome "La Sapienza", Rome, Italy.
| | - Luca Padovani
- Department of Mechanical and Aerospace Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Giorgio Graziani
- Department of Mechanical and Aerospace Engineering, University of Rome "La Sapienza", Rome, Italy
| | - Renzo Piva
- Department of Mechanical and Aerospace Engineering, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
11
|
Wang J, Wainwright DK, Lindengren RE, Lauder GV, Dong H. Tuna locomotion: a computational hydrodynamic analysis of finlet function. J R Soc Interface 2020; 17:20190590. [PMID: 32264740 PMCID: PMC7211474 DOI: 10.1098/rsif.2019.0590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/19/2020] [Indexed: 11/12/2022] Open
Abstract
Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna (Thunnus albacares) during steady swimming. High-speed videos were obtained to provide kinematic data on the in vivo motion of finlets. High-fidelity simulations were then carried out to examine the hydrodynamic performance and vortex dynamics of a biologically realistic multiple-finlet model with reconstructed kinematics. It was found that finlets undergo both heaving and pitching motion and are delayed in phase from anterior to posterior along the body. Simulation results show that finlets were drag producing and did not produce thrust. The interactions among finlets helped reduce total finlet drag by 21.5%. Pitching motions of finlets helped reduce the power consumed by finlets during swimming by 20.8% compared with non-pitching finlets. Moreover, the pitching finlets created constructive forces to facilitate posterior body flapping. Wake dynamics analysis revealed a unique vortex tube matrix structure and cross-flow streams redirected by the pitching finlets, which supports their hydrodynamic function in scombrid fishes. Limitations on modelling and the generality of results are also discussed.
Collapse
Affiliation(s)
- Junshi Wang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Dylan K. Wainwright
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Royce E. Lindengren
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - George V. Lauder
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
12
|
Experimental Study of Body-Fin Interaction and Vortex Dynamics Generated by a Two Degree-Of-Freedom Fish Model. Biomimetics (Basel) 2019; 4:biomimetics4040067. [PMID: 31597296 PMCID: PMC6963735 DOI: 10.3390/biomimetics4040067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 09/24/2019] [Indexed: 11/26/2022] Open
Abstract
Oscillatory modes of swimming are used by a majority of aquatic swimmers to generate thrust. This work seeks to understand the phenomenological relationship between the body and caudal fin for fast and efficient thunniform swimming. Phase-averaged velocity data was collected and analyzed in order to understand the effects of body-fin kinematics on the wake behind a two degree-of-freedom fish model. The model is based on the yellowfin tuna (Thunnus albacares) which is known to be both fast and efficient. Velocity data was obtained along the side of the tail and caudal fin region as well as in the wake downstream of the caudal fin. Body-generated vortices were found to be small and have an insignificant effect on the caudal fin wake. The evolution of leading edge vortices formed on the caudal fin varied depending on the body-fin kinematics. The circulation produced at the trailing edge during each half-cycle was found to be relatively insensitive to the freestream velocity, but also varied with body-fin kinematics. Overall, the generation of vorticity in the wake was found to dependent on the trailing edge motion profile and velocity. Even relatively minor deviations from the commonly used model of sinusoidal motion is shown to change the strength and organization of coherent structures in the wake, which have been shown in the literature to be related to performance metrics such as thrust and efficiency.
Collapse
|
13
|
Dorschner B, Chikatamarla SS, Karlin IV. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions. Phys Rev E 2017; 95:063306. [PMID: 28709335 DOI: 10.1103/physreve.95.063306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015)JCTPAH0021-999110.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B. Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016)JFLSA70022-112010.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re=40000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
Collapse
Affiliation(s)
- B Dorschner
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - S S Chikatamarla
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - I V Karlin
- Aerothermochemistry and Combustion Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|