1
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2022; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
2
|
Sahm V, Maurer C, Baumeister T, Anand A, Strangmann J, Schmid RM, Wang TC, Quante M. Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker. Oncotarget 2022; 13:347-359. [PMID: 35178191 PMCID: PMC8842791 DOI: 10.18632/oncotarget.28198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Barrett’s esophagus (BE) is a precursor of the esophageal adenocarcinoma (EAC). BE- development and its progression to cancer is associated with gastroesophageal reflux disease. However, there is currently no molecular risk prediction model that accurately identifies patients at high risk for EAC. Here, we investigated the impact of shortened telomeres in a mouse model for Barrett esophagus (L2-IL1B). The L2-IL1B mouse model is characterized by IL-1β-mediated inflammation, which leads to a Barrett-like metaplasia in the transition zone between the squamous forestomach and glandular cardia/stomach. Telomere shortening was achieved by mTERC knockout. In the second generation (G2) of mTERC knockout L2-IL1B.mTERC−/− G2 mice exhibited telomere dysfunction with significantly shorter telomeres as measured by qFISH compared to L2-IL1B mice, correlating with stronger DNA damage in the form of phosphorylation of H2AX (γH2AX). Macroscopically, tumor area along the squamocolumnar junction (SCJ) was increased in L2-IL1B.mTERC−/− G2 mice, along with increased histopathological dysplasia. In vitro studies indicated increased organoid formation capacity in BE tissue from L2-IL1B.mTERC−/− G2 mice. In addition, pilot studies of human BE-, dysplasia- and EAC tissue samples confirmed that BE epithelial cells with or without dysplasia (LGD) had shorter telomeres compared to gastric cardia tissue. Of note, differentiated goblet cells retained longer telomeres than columnar lined BE epithelium. In conclusion, our studies suggest that shortened telomeres are functionally important for tumor development in a mouse model of BE and are associated with proliferating columnar epithelium in human BE. We propose that shortened telomeres should be evaluated further as a possible biomarker of cancer risk in BE patients.
Collapse
Affiliation(s)
- Vincenz Sahm
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Carlo Maurer
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Theresa Baumeister
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Akanksha Anand
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Julia Strangmann
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Roland M. Schmid
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- II Medizinische Klinik, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Subecz C, Sun JS, Roger L. Effect of DNA repair inhibitor AsiDNA on the incidence of telomere fusion in crisis. Hum Mol Genet 2021; 30:172-181. [PMID: 33480989 PMCID: PMC8091035 DOI: 10.1093/hmg/ddab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
Telomere fusions lead to a state of genomic instability, and are thought to drive clonal evolution and tumorigenesis. Telomere fusions occur via both Classical and Alternative Non-Homologous End Joining repair pathways. AsiDNA is a DNA repair inhibitor that acts by mimicking a DNA double strand break (DSB) and hijacking the recruitment of proteins involved in various DNA repair pathways. In this study, we investigated whether the inhibition of DSB-repair pathways by AsiDNA could prevent telomere fusions during crisis. The present study showed that AsiDNA decreased the frequency of telomere fusions without affecting the rate of telomere erosion. Further, it indicated that AsiDNA does not impact the choice of the repair pathway used for the fusion of short dysfunctional telomeres. AsiDNA is thought to prevent short telomeres from fusing by inhibiting DNA repair. An alternative, non-mutually exclusive possibility is that cells harbouring fusions preferentially die in the presence of AsiDNA, thus resulting in a reduction in fusion frequency. This important work could open the way for investigating the use of AsiDNA in the treatment of tumours that have short dysfunctional telomeres and/or are experiencing genomic instability.
Collapse
Affiliation(s)
- Chloé Subecz
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Jian-Sheng Sun
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| |
Collapse
|
4
|
Cleal K, Baird DM. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability. Trends Genet 2020; 36:347-359. [PMID: 32294415 DOI: 10.1016/j.tig.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
When cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe. Chromothripsis is characterized by localized genomic regions containing tens to thousands of rearrangements and it is becoming increasingly apparent that chromothripsis occurs widely across tumor types and has a clinical impact. Here we discuss how telomere dysfunction can initiate genomic complexity and the emerging mechanisms of chromothripsis.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
5
|
Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 2019; 177:37-45. [PMID: 29604323 PMCID: PMC6162185 DOI: 10.1016/j.mad.2018.03.013] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
Collapse
|
6
|
Ngo G, Hyatt S, Grimstead J, Jones R, Hendrickson E, Pepper C, Baird D. PARP inhibition prevents escape from a telomere-driven crisis and inhibits cell immortalisation. Oncotarget 2018; 9:37549-37563. [PMID: 30680069 PMCID: PMC6331021 DOI: 10.18632/oncotarget.26499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Telomeric crisis is the final replicative barrier to cell immortalisation; it is characterised by genome instability and cell death and is triggered when telomeres become critically short and are subjected to fusion. Pre-cancerous lesions, or early stage cancers, often show signs of a telomere crisis, suggesting that escape from telomere crisis is a prerequisite for disease progression. Telomeric crisis therefore represents an attractive, and as yet unexplored, opportunity for therapeutic intervention. Here, we show that two clinically approved PARP inhibitors, selectively eliminate human cells undergoing a telomere-driven crisis. Clonal populations of a colorectal cancer cell line (HCT116), or the plasma cell leukaemia cell line (JJN-3), expressing a dominant-negative telomerase, entered a telomere-driven crisis at defined population doubling points and telomere lengths. The addition of the PARP inhibitors, olaparib or rucaparib prevented these cells from escaping crisis. PARP inhibition did not alter cellular proliferation prior to crisis, rates of telomere erosion or the telomere length at which crisis was initiated, but affected repair of eroded telomeres, resulting in an increased in intra-chromosomal telomere fusion. This was accompanied by enhanced DNA damage checkpoint activation and elevated levels of apoptosis. We propose that PARP inhibitors impair the repair of dysfunctional telomeres and/or induce replicative stress at telomeres to inhibit escape from a telomere crisis. This is the first demonstration that a drug can selectively kill cells experiencing telomeric crisis. We propose that this type of drug, which we term 'crisolytic', has the potential to eliminate pre-cancerous lesions and tumours exhibiting short dysfunctional telomeres.
Collapse
Affiliation(s)
- Greg Ngo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Sam Hyatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Julia Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Rhiannon Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Eric Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Chris Pepper
- University of Sussex, Brighton and Sussex Medical School, Brighton, UK
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|