1
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Houston Z, Bunt J, Chen KS, Puttick S, Howard CB, Fletcher NL, Fuchs AV, Cui J, Ju Y, Cowin G, Song X, Boyd AW, Mahler SM, Richards LJ, Caruso F, Thurecht KJ. Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS CENTRAL SCIENCE 2020; 6:727-738. [PMID: 32490189 PMCID: PMC7256936 DOI: 10.1021/acscentsci.9b01299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 06/11/2023]
Abstract
Increasing accumulation and retention of nanomedicines within tumor tissue is a significant challenge, particularly in the case of brain tumors where access to the tumor through the vasculature is restricted by the blood-brain barrier (BBB). This makes the application of nanomedicines in neuro-oncology often considered unfeasible, with efficacy limited to regions of significant disease progression and compromised BBB. However, little is understood about how the evolving tumor-brain physiology during disease progression affects the permeability and retention of designer nanomedicines. We report here the development of a modular nanomedicine platform that, when used in conjunction with a unique model of how tumorigenesis affects BBB integrity, allows investigation of how nanomaterial properties affect uptake and retention in brain tissue. By combining different in vivo longitudinal imaging techniques (including positron emission tomography and magnetic resonance imaging), we have evaluated the retention of nanomedicines with predefined physicochemical properties (size and surface functionality) and established a relationship between structure and tissue accumulation as a function of a new parameter that measures BBB leakiness; this offers significant advancements in our ability to relate tumor accumulation of nanomedicines to more physiologically relevant parameters. Our data show that accumulation of nanomedicines in brain tumor tissue is better correlated with the leakiness of the BBB than actual tumor volume. This was evaluated by establishing brain tumors using a spontaneous and endogenously derived glioblastoma model providing a unique opportunity to assess these parameters individually and compare the results across multiple mice. We also quantitatively demonstrate that smaller nanomedicines (20 nm) can indeed cross the BBB and accumulate in tumors at earlier stages of the disease than larger analogues, therefore opening the possibility of developing patient-specific nanoparticle treatment interventions in earlier stages of the disease. Importantly, these results provide a more predictive approach for designing efficacious personalized nanomedicines based on a particular patient's condition.
Collapse
Affiliation(s)
- Zachary
H. Houston
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jens Bunt
- Queensland
Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kok-Siong Chen
- Queensland
Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Brigham
and Women’s Hospital, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Simon Puttick
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth
Scientific and Industrial Research Organisation, Probing Biosystems
Future Science Platform, Royal Brisbane
and Women’s Hospital, Brisbane, Queensland 4029, Australia
| | - Christopher B. Howard
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Training
Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Training Centre for Biopharmaceutical
Innovation The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adrian V. Fuchs
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiwei Cui
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Key
Laboratory of Colloid and Interface Chemistry of the Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yi Ju
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gary Cowin
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Song
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew W. Boyd
- Leukaemia
Foundation Laboratory, QIMR-Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
- Department
of Medicine, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stephen M. Mahler
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Training Centre for Biopharmaceutical
Innovation The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Linda J. Richards
- Queensland
Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- The
School of Biomedical Sciences, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Frank Caruso
- Department
of Chemical Engineering, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, The University of
Queensland, St Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent BioNano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Training
Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Resende FFB, Titze-de-Almeida SS, Titze-de-Almeida R. Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells. Oncol Lett 2018; 15:4891-4899. [PMID: 29552127 DOI: 10.3892/ol.2018.7917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytic tumors, including astrocytomas and glioblastomas, are the most common type of primary brain tumors. Treatment for glioblastomas includes radiotherapy, chemotherapy with temozolomide (TMZ) and surgical ablation. Despite certain therapeutic advances, the survival time of patients is no longer than 12-14 months. Cancer cells overexpress the neuronal isoform of nitric oxide synthase (nNOS). In the present study, it was examined whether the nNOS enzyme serves a role in the damage of astrocytoma (U251MG and U138MG) and glioblastoma (U87MG) cells caused by TMZ. First, TMZ (250 µM) triggered an increase in oxidative stress at 2, 48 and 72 h in the U87MG, U251MG and U138MG cell lines, as revealed by 2',7'-dichlorofluorescin-diacetate assay. The drug also reduced cell viability, as measured by MTT assay. U87MG cells presented a more linear decline in cell viability at time-points 2, 48 and 72 h, compared with the U251MG and U138MG cell lines. The peak of oxidative stress occurred at 48 h. To examine the role of NOS enzymes in the cell damage caused by TMZ, N(ω)-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) were used. L-NAME increased the cell damage caused by TMZ while reducing the oxidative stress at 48 h. The preferential nNOS inhibitor 7-NI also improved the TMZ effects. It caused a 12.8% decrease in the viability of TMZ-injured cells. Indeed, 7-NI was more effective than L-NAME in restraining the increase in oxidative stress triggered by TMZ. Silencing nNOS with a synthetic small interfering (si)RNA (siRNAnNOShum_4400) increased by 20% the effects of 250 µM of TMZ on cell viability (P<0.05). Hoechst 33342 nuclear staining confirmed that nNOS knock-down enhanced TMZ injury. In conclusion, our data reveal that nNOS enzymes serve a role in the damage produced by TMZ on astrocytoma and glioblastoma cells. RNA interference with nNOS merits further studies in animal models to disclose its potential use in brain tumor anticancer therapy.
Collapse
Affiliation(s)
- Fernando Francisco Borges Resende
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|