1
|
Benali Y, Predoi D, Rokosz K, Ciobanu CS, Iconaru SL, Raaen S, Negrila CC, Cimpeanu C, Trusca R, Ghegoiu L, Bleotu C, Marinas IC, Stan M, Boughzala K. Physico-Chemical Properties of Copper-Doped Hydroxyapatite Coatings Obtained by Vacuum Deposition Technique. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3681. [PMID: 39124344 PMCID: PMC11313284 DOI: 10.3390/ma17153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
The hydroxyapatite and copper-doped hydroxyapatite coatings (Ca10-xCux(PO4)6(OH)2; xCu = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle techniques. Information regarding the in vitro antibacterial activity and biological evaluation were obtained. The XRD studies confirmed that the obtained thin films consist of a single phase associated with hydroxyapatite (HAp). The obtained 2D and 3D SEM images did not show cracks or other types of surface defects. The FTIR studies' results proved the presence of vibrational bands characteristic of the hydroxyapatite structure in the studied coating. Moreover, information regarding the HAp and 3CuHAp surface wettability was obtained by water contact angle measurements. The biocompatibility of the HAp and 3CuHAp coatings was evaluated using the HeLa and MG63 cell lines. The cytotoxicity evaluation of the coatings was performed by assessing the cell viability through the MTT assay after incubation with the HAp and 3CuHAp coatings for 24, 48, and 72 h. The results proved that the 3CuHAp coatings exhibited good biocompatible activity for all the tested intervals. The ability of Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) cells to adhere to and develop on the surface of the HAp and 3CuHAp coatings was investigated using AFM studies. The AFM studies revealed that the 3CuHAp coatings inhibited the formation of P. aeruginosa biofilms. The AFM data indicated that P. aeruginosa's attachment and development on the 3CuHAp coatings were significantly inhibited within the first 24 h. Both the 2D and 3D topographies showed a rapid decrease in attached bacterial cells over time, with a significant reduction observed after 72 h of exposure. Our studies suggest that 3CuHAp coatings could be suitable candidates for biomedical uses such as the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Yassine Benali
- Faculty of Sciences, University de Gafsa, Route de Tozeur, Gafsa 2112, Tunisia;
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2, PL 75-453 Koszalin, Poland
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway;
| | - Catalin Constantin Negrila
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, 011464 Bucharest, Romania;
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania;
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania;
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Khaled Boughzala
- Higher Institute of Technological Studies of Ksar Hellal, Ksar-Hellal 5070, Tunisia;
| |
Collapse
|
2
|
Han W, Zhang R, Liu S, Zhang T, Yao X, Cao Y, Li J, Liu X, Li B. Recent Advances in Whiskers: Properties and Clinical Applications in Dentistry. Int J Nanomedicine 2024; 19:7071-7097. [PMID: 39045343 PMCID: PMC11265390 DOI: 10.2147/ijn.s471546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Whiskers are nanoscale, high-strength fibrous crystals with a wide range of potential applications in dentistry owing to their unique mechanical, thermal, electrical, and biological properties. They possess high strength, a high modulus of elasticity and good biocompatibility. Hence, adding these crystals to dental composites as reinforcement can considerably improve the mechanical properties and durability of restorations. Additionally, whiskers are involved in inducing the value-added differentiation of osteoblasts, odontogenic osteocytes, and pulp stem cells, and promoting the regeneration of alveolar bone, periodontal tissue, and pulp tissue. They can also enhance the mucosal barrier function, inhibit the proliferation of tumor cells, control inflammation, and aid in cancer prevention. This review comprehensively summarizes the classification, properties, growth mechanisms and preparation methods of whiskers and focuses on their application in dentistry. Due to their unique physicochemical properties, excellent biological properties, and nanoscale characteristics, whiskers show great potential for application in bone, periodontal, and pulp tissue regeneration. Additionally, they can be used to prevent and treat oral cancer and improve medical devices, thus making them a promising new material in dentistry.
Collapse
Affiliation(s)
- Wenze Han
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Shuzhi Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Tong Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xuemin Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Yuxin Cao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Jiadi Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, People’s Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
3
|
Yuan Z, Li Y, He Y, Qian K, Zhang Y. Differential Analysis of Three Copper-Based Nanomaterials with Different Morphologies to Suppress Alternaria alternata and Safety Evaluation. Int J Mol Sci 2023; 24:ijms24119673. [PMID: 37298626 DOI: 10.3390/ijms24119673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The overuse of copper-based fertilizers and pesticides over the last few decades has resulted in detrimental risks to our environment. Nano-enabled agrichemicals with a high effective utilization ratio have shown great potential for maintaining or minimizing environmental issues in agriculture. Copper-based nanomaterials (Cu-based NMs) serve as a promising alternative to fungicides. Three types of Cu-based NMs with different morphologies were analyzed for their different antifungal effects on Alternaria alternata in this current study. Compared to commercial copper hydroxide water power (Cu(OH)2 WP), all tested Cu-based NMs, including cuprous oxide nanoparticles (Cu2O NPs), copper nanorods (Cu NRs) and copper nanowires (Cu NWs), especially Cu2O NPs and Cu NWs, showed higher antifungal activity against Alternaria alternata. Its EC50 were 104.24 and 89.40 mg L-1, respectively, achieving comparable activity using a dose approximately 1.6 and 1.9-fold lower. Cu-based NMs could introduce the downregulation of melanin production and soluble protein content. In contrast to trends in antifungal activity, Cu2O NPs showed the strongest power in regulating melanin production and protein content and similarly exhibited the highest acute toxicity to adult zebrafish compared to other Cu-based NMs. These results demonstrate that Cu-based NMs could offer great potential in plant disease management strategies.
Collapse
Affiliation(s)
- Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yiwei Li
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuke He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Catley T, Corrigan RM, Parnell AJ. Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature. ACS OMEGA 2023; 8:14873-14883. [PMID: 37151499 PMCID: PMC10157858 DOI: 10.1021/acsomega.2c08068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Research into nanostructured materials, inspired by the topography of certain insect wings, has provided a potential pathway toward drug-free antibacterial surfaces, which may be vital in the ongoing battle against antimicrobial resistance. However, to produce viable antibacterial nanostructured surfaces, we must first understand the bactericidal mechanism of action and how to optimize them to kill the widest range of microorganisms. This review discusses the parameters of nanostructured surfaces that have been shown to influence their bactericidal efficiency and highlights the highly variable nature of many of the findings. A large-scale analysis of the literature is also presented, which further shows a lack of clarity in what is understood about the factors influencing bactericidal efficiency. The potential reasons for the ambiguity, including how the killing effect may be a result of multiple factors and issues with nonstandardized testing of the antibacterial properties of nanostructured surfaces, are then discussed. Finally, a standard method for testing of antimicrobial killing is proposed that will allow comparison between studies and enable a deeper understanding about nanostructured surfaces and how to optimize their bactericidal efficiency.
Collapse
Affiliation(s)
- Thomas
E. Catley
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Rebecca M. Corrigan
- Molecular
Microbiology, School of Biosciences, University
of Sheffield, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
5
|
Seghayer I, Lee AHC, Cheung GSP, Zhang C. Effect of Passive Ultrasonic Irrigation, Er,Cr:YSGG Laser, and Photon-Induced Photoacoustic Streaming against Enterococcus faecalis Biofilms in the Apical Third of Root Canals. Bioengineering (Basel) 2023; 10:bioengineering10040490. [PMID: 37106677 PMCID: PMC10135464 DOI: 10.3390/bioengineering10040490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE This study aimed to compare the antibacterial effectiveness of passive ultrasonic irrigation (PUI), Er,Cr:YSGG laser (WTL), and photon-induced photoacoustic streaming (PIPS) using an Er:YAG laser against Enterococcus faecalis biofilms in the apical third of root canals. METHODS Root canals of 70 single-rooted human teeth were instrumented and infected with E. faecalis for 3 weeks to form biofilms. The samples were randomly divided into five groups as follows: (i) PUI + 3% NaOCl (n = 16); (ii) Er,Cr:YSGG laser (n = 16); (iii) PIPS + 3% NaOCl (n = 16); (iv) positive control group (n = 10); and (v) negative control group (n = 10). The bacterial content in the root canal was sampled using (a) the paper-point sampling method before (S1) and after (S2) treatment and (b) pulverising the apical 5 mm of the root. The number of bacteria recovered from each group was counted as colony-forming units (CFUs). The amount of reduction between the groups was compared with the Kruskal-Wallis test and post-test Dunn's multiple comparisons tests. The significance level was set at 5% (p < 0.05). RESULTS The samples from the paper-point sampling method showed that the amount of bacteria before (S1) and after treatment (S2) was significantly different between PIPS and WTL, as well as between the PUI and WTL groups. In contrast, no significant difference was found between the PIPS and PUI groups. From the pulverised samples, the results indicated no significant difference among all experimental groups in the amount of bacterial reduction in the apical 5 mm of the root. CONCLUSIONS PUI and PIPS showed a significantly greater reduction in bacterial content within the main root canal compared with the WTL. There was no difference among all experimental groups in the apical third of the root.
Collapse
Affiliation(s)
- Ibrahim Seghayer
- Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Angeline H C Lee
- Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gary S P Cheung
- Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengfei Zhang
- Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
6
|
Antibacterial and Proliferative Effects of NaOH-Coated Titanium, Zirconia, and Ceramic-Reinforced PEEK Dental Composites on Bone Marrow Mesenchymal Stem Cells. Pharmaceutics 2022; 15:pharmaceutics15010098. [PMID: 36678727 PMCID: PMC9863913 DOI: 10.3390/pharmaceutics15010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Several metallic and polymer-based implants have been fabricated for orthopedic applications. For instance, titanium (Ti), zirconia (Zr), and polyetheretherketone (PEEK) are employed due to their excellent biocompatibility properties. Hence, the present study aimed to compare the functional and biological properties of these three biomaterials with surface modification. For this purpose, Ti, Zr, and ceramic-reinforced PEEK (CrPEEK) were coated with NaOH and tested for the biological response. Our results showed that the surface modification of these biomaterials significantly improved the water contact, protein adhesion, and bioactivity compared with uncoated samples. Among the NaOH-coated biomaterials, Ti and CrPEEK showed higher protein absorption than Zr. However, the mineral binding ability was higher in CrPEEK than in the other two biomaterials. Although the coating improved the functional properties, NaOH coating did not influence the antibacterial effect against E. coli and S. aureus in these biomaterials. Similar to the antibacterial effects, the NaOH coating did not contribute any significant changes in cell proliferation and cell loading, and CrPEEK showed better biocompatibility among the biomaterials. Therefore, this study concluded that the surface modification of biomaterials could potentially improve the functional properties but not the antibacterial and biocompatibility, and CrPEEK could be an alternative material to Ti and Zr with desirable qualities in orthopedic applications.
Collapse
|
7
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Li W, Hua G, Cai J, Zhou Y, Zhou X, Wang M, Wang X, Fu B, Ren L. Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections. J Funct Biomater 2022; 13:24. [PMID: 35323224 PMCID: PMC8954600 DOI: 10.3390/jfb13010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Antibacterial coating with antibiotics is highly effective in avoiding device-associated infections (DAIs) which is an unsolved healthcare problem that causes significant morbidity and mortality rates. However, bacterial drug resistance caused by uncontrolled release of antibiotics seriously restricts clinical efficacy of antibacterial coating. Hence, a local and controlled-release system which can release antibiotics in response to bacterial infected signals is necessary in antibacterial coating. Herein, a multi-stimulus responsive multilayer antibacterial coating was prepared through layer-by-layer (LbL) self-assembly of montmorillonite (MMT), chlorhexidine acetate (CHA) and Poly(protocatechuic acid-polyethylene glycol 1000-bis(phenylboronic acid carbamoyl) cystamine) (PPPB). The coating can be covered on various substrates such as cellulose acetate membrane, polyacrylonitrile membrane, polyvinyl chloride membrane, and polyurethane membrane, proving it is a versatile coating. Under the stimulation of acids, glucose or dithiothreitol, this coating was able to achieve controlled release of CHA and kill more than 99% of Staphylococcus aureus and Escherichia coli (4 × 108 CFU/mL) within 4 h. In the mouse infection model, CHA releasing of the coating was triggered by infected microenvironment to completely kill bacteria, achieving wounds healing within 14 days.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Guanping Hua
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Yaming Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Baoqing Fu
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Bueno J, Virto L, Toledano-Osorio M, Figuero E, Toledano M, Medina-Castillo AL, Osorio R, Sanz M, Herrera D. Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers (Basel) 2022; 14:polym14030358. [PMID: 35160348 PMCID: PMC8839475 DOI: 10.3390/polym14030358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
This investigation aimed to evaluate the antibacterial effect of polymeric nanoparticles (NPs), functionalized with calcium, zinc, or doxycycline, using a subgingival biofilm model of six bacterial species (Streptococcus oralis,Actinomyces naeslundii, Veillonela parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans) on sandblasted, large grit, acid-etched titanium discs (TiDs). Undoped NPs (Un-NPs) or doped NPs with calcium (Ca-NPs), zinc (Zn-NPs), or doxycycline (Dox-NPs) were applied onto the TiD surfaces. Uncovered TiDs were used as negative controls. Discs were incubated under anaerobic conditions for 12, 24, 48, and 72 h. The obtained biofilm structure was studied by scanning electron microscopy (SEM) and its vitality and thickness by confocal laser scanning microscopy (CLSM). Quantitative polymerase chain reaction of samples was used to evaluate the bacterial load. Data were evaluated by analysis of variance (p < 0.05) and post hoc comparisons with Bonferroni adjustments (p < 0.01). As compared with uncovered TiDs, Dox-NPs induced higher biofilm mortality (47.21% and 85.87%, respectively) and reduced the bacterial load of the tested species, after 72 h. With SEM, scarce biofilm formation was observed in Dox-NPs TiDs. In summary, Dox-NPs on TiD reduced biofilm vitality, bacterial load, and altered biofilm formation dynamics.
Collapse
Affiliation(s)
- Jaime Bueno
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (L.V.); (E.F.); (M.S.); (D.H.)
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (L.V.); (E.F.); (M.S.); (D.H.)
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (M.T.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (L.V.); (E.F.); (M.S.); (D.H.)
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (M.T.)
| | | | - Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (M.T.)
- Correspondence:
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (L.V.); (E.F.); (M.S.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (L.V.); (E.F.); (M.S.); (D.H.)
| |
Collapse
|
11
|
Chen N, Wen J, Wang Z, Wang J. Multiple regulation and targeting effects of borneol in the neurovascular unit in neurodegenerative diseases. Basic Clin Pharmacol Toxicol 2021; 130:5-19. [PMID: 34491621 DOI: 10.1111/bcpt.13656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Efficient delivery of brain-targeted drugs is highly important for the success of therapies in neurodegenerative diseases. Borneol has several biological activities, such as anti-inflammatory and cell penetration enhancing effect, and can regulate processes in the neurovascular unit (NVU), such as protein toxic stress, autophagosome/lysosomal system, oxidative stress, programmed cell death and neuroinflammation. However, the influence of borneol on NVU in neurodegenerative diseases has not been fully explained. This study searched the keywords 'borneol', 'neurovascular unit', 'endothelial cell', 'astrocyte', 'neuron', 'blood-brain barrier', 'neurodegenerative diseases' and 'brain disease', in PubMed, BioMed Central, China National Knowledge Infrastructure (CNKI), and Bing search engines to explore the influence of borneol on NVU. In addition to the principle and mechanism of penetration of borneol in the brain, this study also showed its multiple regulation effects on NVU. Borneol was able to penetrate the blood-brain barrier (BBB), affecting the signal transmission between BBB and the microenvironment of the brain, down-regulating the expression of inflammatory and oxidative stress proteins in NVU, especially in microglia and astrocytes. In summary, borneol is a potential drug delivery agent for drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|
13
|
Díaz Lantada A, Franco-Martínez F, Hengsbach S, Rupp F, Thelen R, Bade K. Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability. NANOMATERIALS 2020; 10:nano10112287. [PMID: 33218132 PMCID: PMC7698866 DOI: 10.3390/nano10112287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance predicted thanks to adequately structured and trained artificial neural networks (ANN). The authors explain the creation of a comprehensive library of microtextured surfaces with well-known wettability properties. Such a library is processed and employed for the generation and training of artificial neural networks, which can predict the actual wetting performance of new design biointerfaces. The present research demonstrates that AI can importantly support the engineering of innovative hierarchical or multiscale surfaces when complex-to-model properties and phenomena, such as wettability and wetting, are involved.
Collapse
Affiliation(s)
- Andrés Díaz Lantada
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Correspondence:
| | - Francisco Franco-Martínez
- Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| | - Stefan Hengsbach
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.H.); (F.R.); (R.T.); (K.B.)
| | - Florian Rupp
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.H.); (F.R.); (R.T.); (K.B.)
| | - Richard Thelen
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.H.); (F.R.); (R.T.); (K.B.)
| | - Klaus Bade
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (S.H.); (F.R.); (R.T.); (K.B.)
| |
Collapse
|
14
|
Oliveira VDC, Souza MT, Zanotto ED, Watanabe E, Coraça-Huber D. Biofilm Formation and Expression of Virulence Genes of Microorganisms Grown in Contact with a New Bioactive Glass. Pathogens 2020; 9:E927. [PMID: 33182533 PMCID: PMC7696213 DOI: 10.3390/pathogens9110927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Bioactive glass F18 (BGF18), a glass containing SiO2-Na2O-K2O-MgO-CaO-P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time. However, changes in the expression level of genes related to virulence factors were observed after 8 and 48 h of culture in BGF18. BGF18 coating did not have a clear inhibitory effect on biofilm growth but promoted the modulation of virulence factors.
Collapse
Affiliation(s)
- Viviane de Cássia Oliveira
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; (V.d.C.O.); (E.W.)
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory—LaMaV, Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz km 235, São Carlos 13565-905, São Paulo, Brazil; (M.T.S.); (E.D.Z.)
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory—LaMaV, Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz km 235, São Carlos 13565-905, São Paulo, Brazil; (M.T.S.); (E.D.Z.)
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; (V.d.C.O.); (E.W.)
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil
| | - Débora Coraça-Huber
- Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck, Peter‒Mayr-Strasse 4b, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|
16
|
Dwivedi C, Pandey H, Pandey AC, Patil S, Ramteke PW, Laux P, Luch A, Singh AV. In Vivo Biocompatibility of Electrospun Biodegradable Dual Carrier (Antibiotic + Growth Factor) in a Mouse Model-Implications for Rapid Wound Healing. Pharmaceutics 2019; 11:E180. [PMID: 31013995 PMCID: PMC6523103 DOI: 10.3390/pharmaceutics11040180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
Tissue engineering technologies involving growth factors have produced one of the most advanced generations of diabetic wound healing solutions. Using this approach, a nanocomposite carrier was designed using Poly(d,l-lactide-co-glycolide) (PLGA)/Gelatin polymer solutions for the simultaneous release of recombinant human epidermal growth factor (rhEGF) and gentamicin sulfate at the wound site to hasten the process of diabetic wound healing and inactivation of bacterial growth. The physicochemical characterization of the fabricated scaffolds was carried out using scanning electron microscopy (SEM) and X-ay diffraction (XRD). The scaffolds were analyzed for thermal stability using thermogravimetric analysis and differential scanning calorimetry. The porosity, biodegradability, and swelling behavior of the scaffolds was also evaluated. Encapsulation efficiency, drug loading capacity, and in vitro drug release were also investigated. Further, the bacterial inhibition percentage and detailed in vivo biocompatibility for wound healing efficiency was performed on diabetic C57BL6 mice with dorsal wounds. The scaffolds exhibited excellent wound healing and continuous proliferation of cells for 12 days. These results support the applicability of such systems in rapid healing of diabetic wounds and ulcers.
Collapse
Affiliation(s)
- Charu Dwivedi
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002, India.
| | - Himanshu Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002, India.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, India.
| | - Avinash C Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002, India.
| | | | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| |
Collapse
|
17
|
Tripathy A, Kumar A, Chowdhury AR, Karmakar K, Purighalla S, Sambandamurthy V, Chakravortty D, Sen P. A Nanowire-Based Flexible Antibacterial Surface Reduces the Viability of Drug-Resistant Nosocomial Pathogens. ACS APPLIED NANO MATERIALS 2018; 1:2678-2688. [DOI: 10.1021/acsanm.8b00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
| | | | | | | | - Swathi Purighalla
- Mazumdar Shaw Centre for Translational Research, NH Health City, Bangalore 560099, India
| | - Vasan Sambandamurthy
- Mazumdar Shaw Centre for Translational Research, NH Health City, Bangalore 560099, India
| | | | | |
Collapse
|
18
|
Tripathy A, Kumar A, Sreedharan S, Muralidharan G, Pramanik A, Nandi D, Sen P. Fabrication of Low-Cost Flexible Superhydrophobic Antibacterial Surface with Dual-Scale Roughness. ACS Biomater Sci Eng 2018; 4:2213-2223. [PMID: 33435043 DOI: 10.1021/acsbiomaterials.8b00209] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we report a large-area fabrication of a flexible superhydrophobic bactericidal surface decorated with copper hydroxide nanowires. This involves a simple two-step method which involves growth followed by transfer of the nanowires onto the polydimethylsiloxane (PDMS) surface by mechanical peeling. Additional roughness in PDMS is obtained through incomplete wetting of the nanoscale gaps which leads to dual-scale roughness and superhydrophobicity with a contact angle of 169° and hysteresis of less than 2°. The simplicity of the process makes it low-cost and easily scalable. The process allows fabrication of nonplanar 3D surfaces. The surface shows blood repellence and antibacterial activity against Escherichia coli with more than 5 log reductions in bacterial colony. The surface also shows hemocompatible behavior, making it suitable for healthcare applications. The fabricated surface is found to be extremely robust against stretching, twisting, sandpaper abrasion, solid weight impact, and tape peel test. The surface is found to withstand human weight multiple times without losing its hydrophobicity, making it suitable for several practical scenarios in healthcare and household applications.
Collapse
Affiliation(s)
- Abinash Tripathy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Arvind Kumar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Syama Sreedharan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Amitava Pramanik
- Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Singh AV, Jahnke T, Kishore V, Park BW, Batuwangala M, Bill J, Sitti M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater 2018; 71:61-71. [PMID: 29499399 DOI: 10.1016/j.actbio.2018.02.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). STATEMENT OF SIGNIFICANCE Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Timotheus Jahnke
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Vimal Kishore
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Madu Batuwangala
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A, Noirot P, Laible PD. Tuning antimicrobial properties of biomimetic nanopatterned surfaces. NANOSCALE 2018; 10:6639-6650. [PMID: 29582025 DOI: 10.1039/c8nr00439k] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.
Collapse
Affiliation(s)
- Martyna Michalska
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
22
|
Characterization of sodium tripolyphosphate and sodium citrate dehydrate residues on surfaces. Talanta 2018; 176:8-16. [DOI: 10.1016/j.talanta.2017.07.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 11/15/2022]
|
23
|
Dwivedi C, Pandey I, Pandey H, Patil S, Mishra SB, Pandey AC, Zamboni P, Ramteke PW, Singh AV. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. J Biomed Mater Res A 2017; 106:641-651. [PMID: 28986947 DOI: 10.1002/jbm.a.36268] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
Abstract
Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641-651, 2018.
Collapse
Affiliation(s)
- Charu Dwivedi
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.,Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India
| | - Ishan Pandey
- Department of Clinical Laboratory Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211001, India.,Department of Microbiology, Motilal Nehru Medical College (MLNMC), Allahabad, 211001, India
| | - Himanshu Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Sandip Patil
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Kanpur, 208016, India
| | | | - Avinash C Pandey
- Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad, 211002, India
| | - Paolo Zamboni
- Vascular Disease Center, University of Ferrara, Ferrara, Italy
| | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| |
Collapse
|
24
|
Uddin I, Ahmad K, Khan AA, Kazmi MA. Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Vikram Singh A, Gharat T, Batuwangala M, Park B, Endlein T, Sitti M. Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology. J Biomed Mater Res B Appl Biomater 2017; 106:1369-1382. [DOI: 10.1002/jbm.b.33922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ajay Vikram Singh
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Tanmay Gharat
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteNew York New York12180
| | - Madu Batuwangala
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Byung‐Wook Park
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Thomas Endlein
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Metin Sitti
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| |
Collapse
|