1
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
2
|
Lee TY, Tseng CJ, Wang JW, Wu CP, Chung CY, Tseng TT, Lee SC. Anti-microRNA-1976 as a Novel Approach to Enhance Chemosensitivity in XAF1+ Pancreatic and Liver Cancer. Biomedicines 2023; 11:biomedicines11041136. [PMID: 37189754 DOI: 10.3390/biomedicines11041136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The current cancer treatments using chemoagents are not satisfactory in terms of outcomes and prognosis. Chemoagent treatments result in cell death or arrest, but the accompanying cellular responses are not well-studied. Exosomes, which are extracellular vesicles secreted by living cells, might mediate cellular responses through microRNAs. We found that miR-1976 was highly enriched in exosomes secreted after chemoagent treatment. We developed a novel approach for in situ mRNA target screening and discovered several miR-1976-specific mRNA targets, including the proapoptotic gene XAF1, which was targeted by miR-1976 and which suppressed chemoagent-induced cell apoptosis. Increased RPS6KA1 gene transcription was associated with the increase in its intronic pre-miR-1976 expression. Blockade of miR-1976 could enhance chemosensitivities of hepatoma and pancreatic cancer cells in an XAF1-dependent manner, as evidenced by increased levels of cell apoptosis, reduced IC50 in cell toxicity assays, and suppressed tumor growth in animal xenograft experiments in vivo. We propose that intracellular levels of miR-1976 determine chemosensitivity, and its blockade could be a novel strategy and potential therapeutic application in cancer treatment.
Collapse
Affiliation(s)
- Tsai-Yen Lee
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chien-Jen Tseng
- Department of Gastroenterology and General Surgery, ChiMei Hospital, Tainan City 72263, Taiwan
| | - Jin-Wun Wang
- Department of Surgery, ChiMei Hospital, Tainan City 72263, Taiwan
| | - Ching-Po Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chin-Yuan Chung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Ting Tseng
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Shao-Chen Lee
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
3
|
Wang Y, Du J, Liu Y, Yang S, Wang Q. microRNA-301a-3p is a potential biomarker in venous ulcers vein and gets involved in endothelial cell dysfunction. Bioengineered 2022; 13:14138-14158. [PMID: 35734851 PMCID: PMC9342147 DOI: 10.1080/21655979.2022.2083821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022] Open
Abstract
Venous ulcer is a common contributor to chronic venous insufficiency (CVI) of lower limbs, which seriously affects the life quality of patients. In this study, we researched the expression characteristics of microRNA-301a-3p (miR-301a-3p) in patients with CVI and investigated the impact of miR-301a-3p on the dysfunction of human umbilical vein endothelial cells (HUVECs). The plasma level of miR-301a-3p in normal controls, patients with varicose great saphenous vein, and patients with the venous ulcer of lower limbs were measured. We adopted Interleukin-1β (IL-1β), H2O2, and oxygen and glucose deprivation (OGD) to induce endothelial cell injury in vitro. In this way, we evaluated the influence of miR-301a-3p on HUVEC viability, apoptosis, inflammatory response, and oxidative stress. Our data showed that miR-301a-3p was substantially overexpressed in patients with lower limb venous ulcers. The viability of HUVECs decreased, and miR-301a-3p was up-regulated after IL-1β, H2O2, and OGD treatment. miR-301a-3p inhibition greatly ameliorated the dysfunction and cell damage of HUVECs, promoted IGF1/PI3K/Akt/PPARγ, and down-regulated NF-κB/MMPs. The phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) or the peroxisome proliferator-activated receptor-γ (PPARγ) inhibitor (GW9661) reversed the anti-inflammatory, antioxidant, and anti-apoptotic effects mediated by miR-301a-3p down-regulation. The nuclear factor-κB (NF-κB) inhibitor lessened cell injury mediated by miR-301a-3p overexpression. In terms of the mechanism, miR-301a-3p targeted the 3'UTR of Insulin-like growth factor-1 (IGF1) and repressed the profile of IGF1. Thus, miR-301a-3p mediates venous endothelial cell damage by targeting IGF1 and regulating the IGF1/PI3K/Akt/PPARγ/NF-κB/MMPs pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Jingchen Du
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Yu Liu
- Department of Vascular Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| | - Shuhui Yang
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Wang X, Hong Y, Wu L, Duan X, Hu Y, Sun Y, Wei Y, Dong Z, Wu C, Yu D, Xu J. Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Front Neurol 2021; 11:551411. [PMID: 33510702 PMCID: PMC7835478 DOI: 10.3389/fneur.2020.551411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
This study aims at evaluating the importance and its underlying mechanism of the cluster of microRNA-144/451 (miR-144/451) in the models with intracerebral hemorrhage (ICH). A model of collagenase-induced mice with ICH and a model of mice with simple miR-144/451 gene knockout (KO) were used in this study. Neurodeficits and the water content of the brain of the mice in each group were detected 3 days after collagenase injection. The secretion of proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), as well as certain biomarkers of oxidative stress, was determined in this study. The results revealed that the expression of miR-451 significantly decreased in the mice with ICH, whereas miR-144 showed no significant changes. KO of the cluster of miR-144/451 exacerbated the neurological deficits and brain edema in the mice with ICH. Further analyses demonstrated that the KO of the cluster of miR-144/451 significantly promoted the secretion of TNF-α and IL-1β and the oxidative stress in the perihematomal region of the mice with ICH. In addition, the miR-144/451's depletion inhibited the regulatory axis' activities of miR-451-14-3-3ζ-FoxO3 in the mice with ICH. In conclusion, these data demonstrated that miR-144/451 might protect the mice with ICH against neuroinflammation and oxidative stress by targeting the pathway of miR-451-14-3-3ζ-FoxO3.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yin Hong
- National Center for Clinical Research of Nervous System Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Xiaochun Duan
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yue Hu
- Department of Neurology, Zhangjiagang City First People's Hospital, Zhangjiagang, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yanqiu Wei
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Zhen Dong
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Chenghao Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA ResearchNoncoding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
miR-107 inhibition upregulates CAB39 and activates AMPK-Nrf2 signaling to protect osteoblasts from dexamethasone-induced oxidative injury and cytotoxicity. Aging (Albany NY) 2020; 12:11754-11767. [PMID: 32527986 PMCID: PMC7343481 DOI: 10.18632/aging.103341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
To human osteoblasts dexamethasone (DEX) treatment induces significant oxidative injury and cytotoxicity. Inhibition of CAB39 (calcium binding protein 39)-targeting microRNA can induce CAB39 upregulation, activating AMP-activated protein kinase (AMPK) signaling and offering osteoblast cytoprotection. Here we identified a novel CAB39-targeting miRNA: the microRNA-107 (miR-107). RNA-Pull down assay results demonstrated that the biotinylated-miR-107 directly binds to CAB39 mRNA in OB-6 human osteoblastic cells. Forced overexpression of miR-107, by infection of pre-miR-107 lentivirus or transfection of wild-type miR-107 mimic, largely inhibited CAB39 expression in OB-6 cells and primary human osteoblasts. Contrarily, miR-107 inhibition, by antagomiR-107, increased its expression, resulting in AMPK cascade activation. AntagomiR-107 largely attenuated DEX-induced cell death and apoptosis in OB-6 cells and human osteoblasts. Importantly, osteoblast cytoprotection by antagomiR-107 was abolished with AMPK in-activation by AMPKα1 dominant negative mutation, silencing or knockout. Further studies demonstrated that antagomiR-107 activated AMPK downstream Nrf2 cascade to inhibit DEX-induced oxidative injury. Conversely, Nrf2 knockout almost abolished antagomiR-107-induced osteoblast cytoprotection against DEX. Collectively, miR-107 inhibition induced CAB39 upregulation and activated AMPK-Nrf2 signaling to protect osteoblasts from DEX-induced oxidative injury and cytotoxicity.
Collapse
|
6
|
Kong Y, Li S, Cheng X, Ren H, Zhang B, Ma H, Li M, Zhang XA. Brain Ischemia Significantly Alters microRNA Expression in Human Peripheral Blood Natural Killer Cells. Front Immunol 2020; 11:759. [PMID: 32477329 PMCID: PMC7240012 DOI: 10.3389/fimmu.2020.00759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Brain ischemia induces systemic immunosuppression and increases a host's susceptibility to infection. MicroRNAs (miRNAs) are molecular switches in immune cells, but the alterations of miRNAs in human immune cells in response to brain ischemia and their impact on immune defense remain elusive. Natural killer (NK) cells are critical for early host defenses against pathogens. In this study, we identified reduced counts, cytokine production, and cytotoxicity in human peripheral blood NK cells obtained from patients with acute ischemic stroke. The extent of NK cell loss of number and activity was associated with infarct volume. MicroRNA sequencing analysis revealed that brain ischemia significantly altered miRNA expression profiles in circulating NK cells, in which miRNA-451a and miRNA-122-5p were dramatically upregulated. Importantly, inhibition of miR-451a or miR-122-5p augmented the expression of activation-associated receptors in NK cells. These results provide the first evidence that brain ischemia alters miRNA signatures in human NK cells.
Collapse
Affiliation(s)
- Ying Kong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Shiyao Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaojing Cheng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Bohao Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongshan Ma
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Wang H, Wang Z, Tang Q. Reduced expression of microRNA-199a-3p is associated with vascular endothelial cell injury induced by type 2 diabetes mellitus. Exp Ther Med 2018; 16:3639-3645. [PMID: 30233719 DOI: 10.3892/etm.2018.6655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the function and mechanism of action of microRNA (miRNA or miR)-199a-3p in vascular endothelial cell injury induced by type 2 diabetes mellitus (T2DM). A total of 36 patients with T2DM (26 males and 10 females; mean age, 52.5±7.0 years) and 20 healthy subjects (10 males and 10 females; mean age, 55.6±4.5 years) were included in the present study. Peripheral blood samples were obtained from all participants and total RNA was extracted Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-199a-3p. Following the transfection of human umbilical vein endothelial cells (HUVECs) with a negative control (NC) miRNA or miR-199a-3p mimics, cell proliferation was assessed using a Cell Counting kit-8 assay. Cell migration was investigated using Transwell assays and flow cytometry was performed to detect the apoptosis of HUVECs. HUVECs were infected with Ad-GFP-LC3B and laser-scanning confocal microscopy was performed to observe autophagosomes in HUVECs. Western blotting was used to measure the expression of proteins associated with autophagy and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (NF)-κB signaling pathway. MiR-199a-3p was downregulated in peripheral blood from patients with T2DM compared with healthy subjects. Transfection with miR-199a-3p mimics promoted the proliferation and migration of HUVECs. However, miR-199a-3p overexpression inhibited the apoptosis of HUVECs. MiR-199a-3p facilitated HUVEC autophagy by affecting autophagy-associated signaling pathways. Furthermore, miR-199a-3p regulated the biological functions of HUVECs via the PI3K/AKT/NF-κB signaling pathway. The results of the present study suggest that miR-199a-3p expression was reduced in patients with T2DM compared with healthy subjects and may be associated with vascular endothelial cell injury. In addition, miR-199a-3p promoted the proliferation, migration and autophagy of HUVECs, potentially by regulating the PI3K/AKT/NF-κB signaling pathway. Therefore, miR-199a-3p may function as protector of vascular endothelia.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Zhengxia Wang
- Clinical Skills Center, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Qingbin Tang
- Emergency Medicine Department, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
8
|
Xu Y, He X. [Recent advances in flap surgery]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:781-785. [PMID: 30129295 PMCID: PMC8435948 DOI: 10.7507/1002-1892.201806051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 11/03/2022]
Abstract
In recent years, flap surgery has been well-developed, and many theories and techniques of flap surgery have been updating. The purpose of manuscript which is based on the flap-related literature is to summarize recent developments of basic and clinic researches, indicate the future of the flap surgery, and show the consensus and guidelines of flap surgery made by Chinese experts.
Collapse
Affiliation(s)
- Yongqing Xu
- Institute of Trauma Orthopedic Surgery of Chinese PLA, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032,
| | - Xiaoqing He
- Institute of Trauma Orthopedic Surgery of Chinese PLA, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032, P.R.China
| |
Collapse
|
9
|
Shi X, Liu HY, Li SP, Xu HB. Keratinocyte growth factor protects endometrial cells from oxygen glucose deprivation/re-oxygenation via activating Nrf2 signaling. Biochem Biophys Res Commun 2018; 501:178-185. [DOI: 10.1016/j.bbrc.2018.04.208] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
|
10
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|