1
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Dolz M, Monterrey DT, Beltrán-Nogal A, Menés-Rubio A, Keser M, González-Pérez D, de Santos PG, Viña-González J, Alcalde M. The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution. Methods Enzymol 2023; 693:73-109. [PMID: 37977739 DOI: 10.1016/bs.mie.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) are arising as versatile biocatalysts for C-H oxyfunctionalization reactions. In recent years, several directed evolution studies have been conducted to design improved UPO variants. An essential part of this protein engineering strategy is the design of reliable colorimetric high-throughput screening (HTS) assays for mutant library exploration. Here, we present a palette of 12 colorimetric HTS assays along with their step-by-step protocols, which have been validated for directed UPO evolution campaigns. This array of colorimetric assays will pave the way for the discovery and design of new UPO variants.
Collapse
Affiliation(s)
- Mikel Dolz
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Dianelis T Monterrey
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Alejandro Beltrán-Nogal
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Andrea Menés-Rubio
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Merve Keser
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - David González-Pérez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | | | - Javier Viña-González
- EvoEnzyme S.L., C/ Faraday 7. Parque Científico de Madrid, Cantoblanco, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain.
| |
Collapse
|
3
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
4
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Correction: New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product. PLoS One 2017; 12:e0178974. [PMID: 28558054 PMCID: PMC5448797 DOI: 10.1371/journal.pone.0178974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|