1
|
Chen X, Zhang F, Shi Y, Wang H, Chen M, Yang D, Wang L, Liu P, Xie F, Chen J, Fu A, Hu B, Wang B, Ouyang Z, Wu S, Lin Z, Cen Z, Luo W. Origin and evolution of pentanucleotide repeat expansions at the familial cortical myoclonic tremor with epilepsy type1 - SAMD12 locus. Eur J Hum Genet 2024:10.1038/s41431-024-01586-y. [PMID: 38467733 DOI: 10.1038/s41431-024-01586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Familial cortical myoclonic tremor with epilepsy type 1 (FCMTE1) is caused by (TTTTA)exp(TTTCA)exp repeat expansions in SAMD12, while pure (TTTTA)exp is polymorphic. Our investigation focused on the origin and evolution of pure (TTTTA)exp and (TTTTA)exp(TTTCA)exp at this locus. We observed a founder effect between them. The phylogenetic analysis suggested that the (TTTTA)exp(TTTCA)exp might be generated from pure (TTTTA)exp through infrequent transformation events. Long-read sequencing revealed somatic generation of (TTTTA)exp(TTTCA)exp from pure (TTTTA)exp, likely via long segment (TTTCA) repeats insertion. Our findings indicate close relationships between the non-pathogenic (TTTTA)exp and the pathogenic (TTTTA)exp(TTTCA)exp, with dynamic interconversions. This sheds light on the genesis of pathogenic repeat expansions from ancestral premutation alleles. Our results may guide future studies in detecting novel repeat expansion disorders and elucidating repeat expansion mutational processes, thereby enhancing our understanding of human genomic variation.
Collapse
Affiliation(s)
- Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fan Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yihua Shi
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Haotian Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Miao Chen
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Peng Liu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Jiawen Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory Co., Ltd. Wuhan, Wuhan, 430075, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiru Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Malekshoar M, Azimi SA, Kaki A, Mousazadeh L, Motaei J, Vatankhah M. CRISPR-Cas9 Targeted Enrichment and Next-Generation Sequencing for Mutation Detection. J Mol Diagn 2023; 25:249-262. [PMID: 36841425 DOI: 10.1016/j.jmoldx.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/27/2023] Open
Abstract
Despite the rapid application of next-generation sequencing (NGS) technologies, target sequencing in regions of the genome is often required to diagnose many genetic diseases. Target enrichment can be an effective factor in reducing the cost of sequencing and the duration of sequencing. Recently, several clustered system regularly interspaced short palindromic repeats (CRISPR)-based methods (amplification-free sequencing) have been developed to target enrichment in combination with one of the NGS platforms. CRISPR-based target enrichment strategies act as an auxiliary tool to improve NGS analytical performance, thereby indirectly facilitating nucleic acid detection. The direct DNA cleavage approach by CRISPR-Cas at genome-specific sites enhances the possibility of separating native large fragments from disease-related genomic regions. The CRISPR-Cas can isolate the target region without any amplification; subsequently, long-read sequencing technologies were also implemented. These methods, as promising tools, have the ability to assess genetic and epigenetic composition for clinical application and treatment responses in cancer precision medicine. By modifying CRISPR-based enrichment protocols, it was possible to identify different types of mutations, including structural variants, short tandem repeats, fusion genes, and mobile elements. The Cas9 can specifically eliminate wild-type sequences, and it also enables the enrichment and detection of small amounts of tumor DNA fragments among the highly heterogeneous fragments of wild-type DNA.
Collapse
Affiliation(s)
- Mehrdad Malekshoar
- Anesthesiology, Critical Care and Pain Management Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sajad Ataei Azimi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arastoo Kaki
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Mousazadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Motaei
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Vatankhah
- Anesthesiology, Critical Care and Pain Management Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
4
|
Arning L, Nguyen HP. Huntington disease update: new insights into the role of repeat instability in disease pathogenesis. MED GENET-BERLIN 2021; 33:293-300. [PMID: 38835439 PMCID: PMC11006308 DOI: 10.1515/medgen-2021-2101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| |
Collapse
|
5
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
6
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
7
|
Hafford-Tear NJ, Tsai YC, Sadan AN, Sanchez-Pintado B, Zarouchlioti C, Maher GJ, Liskova P, Tuft SJ, Hardcastle AJ, Clark TA, Davidson AE. CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat. Genet Med 2019; 21:2092-2102. [PMID: 30733599 PMCID: PMC6752322 DOI: 10.1038/s41436-019-0453-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey J Maher
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Petra Liskova
- UCL Institute of Ophthalmology, London, UK
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J Tuft
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | | | | |
Collapse
|
8
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
9
|
Loureiro JR, Oliveira CL, Mota C, Castro AF, Costa C, Loureiro JL, Coutinho P, Martins S, Sequeiros J, Silveira I. Mutational mechanism for DAB1 (ATTTC) n insertion in SCA37: ATTTT repeat lengthening and nucleotide substitution. Hum Mutat 2019; 40:404-412. [PMID: 30588707 DOI: 10.1002/humu.23704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/28/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022]
Abstract
Dynamic mutations by microsatellite instability are the molecular basis of a growing number of neuromuscular and neurodegenerative diseases. Repetitive stretches in the human genome may drive pathogenicity, either by expansion above a given threshold, or by insertion of abnormal tracts in nonpathogenic polymorphic repetitive regions, as is the case in spinocerebellar ataxia type 37 (SCA37). We have recently established that this neurodegenerative disease is caused by an (ATTTC)n insertion within an (ATTTT)n in a noncoding region of DAB1. We now investigated the mutational mechanism that originated the (ATTTC)n insertion within an ancestral (ATTTT)n . Approximately 3% of nonpathogenic (ATTTT)n alleles are interspersed by AT-rich motifs, contrarily to mutant alleles that are composed of pure (ATTTT)n and (ATTTC)n stretches. Haplotype studies in unaffected chromosomes suggested that the primary mutational mechanism, leading to the (ATTTC)n insertion, was likely one or more T>C substitutions in an (ATTTT)n pure allele of approximately 200 repeats. Then, the (ATTTC)n expanded in size, originating a deleterious allele in DAB1 that leads to SCA37. This is likely the mutational mechanism in three similar (TTTCA)n insertions responsible for familial myoclonic epilepsy. Because (ATTTT)n tracts are frequent in the human genome, many loci could be at risk for this mutational process.
Collapse
Affiliation(s)
- Joana R Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,ICBAS, Universidade do Porto, Porto, Portugal
| | - Cláudia L Oliveira
- Genetics of Cognitive Dysfunction Laboratory, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| | - Carolina Mota
- Genetics of Cognitive Dysfunction Laboratory, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| | - Ana F Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| | - Cristina Costa
- Department of Neurology, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - José L Loureiro
- IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Neurology, Hospital São Sebastião, Feira, Portugal
| | - Paula Coutinho
- IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Population Genetics & Evolution, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Jorge Sequeiros
- IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal.,ICBAS, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J Hum Genet 2018; 64:191-197. [DOI: 10.1038/s10038-018-0551-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
|
11
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front Genet 2018; 9:601. [PMID: 30546383 PMCID: PMC6278776 DOI: 10.3389/fgene.2018.00601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient's age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Collapse
Affiliation(s)
- Jovan Pešović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stojan Perić
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakočević-Stojanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Cumming SA, Hamilton MJ, Robb Y, Gregory H, McWilliam C, Cooper A, Adam B, McGhie J, Hamilton G, Herzyk P, Tschannen MR, Worthey E, Petty R, Ballantyne B, Warner J, Farrugia ME, Longman C, Monckton DG. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018; 26:1635-1647. [PMID: 29967337 PMCID: PMC6189127 DOI: 10.1038/s41431-018-0156-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3'-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3'-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.
Collapse
Affiliation(s)
- Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark J Hamilton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| | - Yvonne Robb
- Clinical Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Helen Gregory
- Department of Clinical Genetics, Aberdeen Royal Hospital, Aberdeen, AB25 2ZA, UK
| | | | - Anneli Cooper
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Berit Adam
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Josephine McGhie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Graham Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Pawel Herzyk
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michael R Tschannen
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth Worthey
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, NW, Huntsville, AL, 35806, USA
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Jon Warner
- Molecular Genetics Service, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|