1
|
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, Prevelige BR, McMahon EK, McNeely T, Sisson ZR, Frenz BJ, Ziur AD, Clay EJ, Eames BD, McCollum SE, Haussmann MF. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep 2023; 13:6180. [PMID: 37061562 PMCID: PMC10105737 DOI: 10.1038/s41598-023-33447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Collapse
Affiliation(s)
- Ariana D Majer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack E Geduldig
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jenna L Farmer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Elyse K McMahon
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Taylor McNeely
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Zach R Sisson
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brian J Frenz
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Alexis D Ziur
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Emily J Clay
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brad D Eames
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| |
Collapse
|
2
|
Gormally BMG, Lopes PC. The effect of infection risk on female blood transcriptomics. Gen Comp Endocrinol 2023; 330:114139. [PMID: 36209834 DOI: 10.1016/j.ygcen.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
Defenses against pathogens can take on many forms. For instance, behavioral avoidance of diseased conspecifics is widely documented. Interactions with these infectious conspecifics can also, however, lead to physiological changes in uninfected animals, an effect that is much less well understood. These changes in behavior and physiology are particularly important to study in a reproductive context, where they can impact reproductive decisions and offspring quality. Here, we studied how an acute (3 h) exposure to an immune-challenged male affected female blood transcriptomics and behavior. We predicted that females paired with immune-challenged males would reduce eating and drinking behaviors (as avoidance behaviors) and that their blood would show activation of immune and stress responses. We used female Japanese quail as a study system because they have been shown to respond to male traits, in terms of their own physiology and egg investment. Only two genes showed significant differential expression due to treatment, including an increase in the threonine dehydrogenase (TDH) transcript, an enzyme important for threonine breakdown. However, hundreds of genes in pathways related to activation of immune responses showed coordinated up-regulation in females exposed to immune-challenged males. Suppressed pathways revealed potential changes to metabolism and reduced responsiveness to glucocorticoids. Contrary to our prediction, we found that females paired with immune-challenged males increased food consumption. Water consumption was not changed by treatment. These findings suggest that even short exposure to diseased conspecifics can trigger both behavioral and physiological responses in healthy animals.
Collapse
Affiliation(s)
- Brenna M G Gormally
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| |
Collapse
|
3
|
Lopes PC, Gormally BMG, Emmi A, Schuerman D, Liyanage C, Beattie UK, Romero LM. Maternal Responses in the Face of Infection Risk. Integr Comp Biol 2022; 62:1584-1594. [PMID: 35675319 DOI: 10.1093/icb/icac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/05/2023] Open
Abstract
When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Brenna M G Gormally
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Aubrey Emmi
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Delilah Schuerman
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Chathuni Liyanage
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | | | | |
Collapse
|
4
|
Langen EMA, Goerlich-Jansson VC, von Engelhardt N. Effects of the maternal and current social environment on female body mass and reproductive traits in Japanese quail ( Coturnix japonica). ACTA ACUST UNITED AC 2019; 222:jeb.187005. [PMID: 30679238 DOI: 10.1242/jeb.187005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The social environment of breeding females can affect their phenotype, with potential adaptive maternal effects on offspring that experience a similar environment. We housed Japanese quail (Coturnix japonica) females in two group sizes (pairs versus groups of four) and studied the effects on their offspring under matched and mismatched conditions. We measured F1 body mass, reproduction, and plasma levels of androgens and corticosterone. F1 group housing led to an increase in body mass. In addition, F1 group housing had a positive effect on mass in daughters of pair-housed P0 females only, which were heaviest under mismatched conditions. At the time of egg collection for the F2 generation, F1 group-housed females were heavier, irrespective of the P0 treatment. F1 females in groups laid heavier eggs, with higher hatching success, and produced heavier offspring, most likely a maternal effect of F1 mass. F1 plasma hormones were affected by neither the P0 nor the F1 social environment. These results contrasted with effects in the P0 generation (reported previously), in which plasma hormone levels, but not mass, differed between social environments. This may be due to changes in adult sex ratios as P0 females were housed with males, whereas F1 females encountered males only during mating. Our study demonstrates potentially relevant mismatch effects of the social environment on F1 body mass and maternal effects on F2 offspring, but further study is needed to understand their adaptive significance and physiological mechanisms.
Collapse
Affiliation(s)
- Esther M A Langen
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany .,Department of Animals in Science and Society, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
| | - Vivian C Goerlich-Jansson
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany.,Department of Animals in Science and Society, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Langen EMA, von Engelhardt N, Goerlich-Jansson VC. No evidence for sex-specific effects of the maternal social environment on offspring development in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2018; 263:12-20. [PMID: 29684400 DOI: 10.1016/j.ygcen.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 01/25/2023]
Abstract
The social environment of reproducing females can cause physiological changes, with consequences for reproductive investment and offspring development. These prenatal maternal effects are often found to be sex-specific and may have evolved as adaptations, maximizing fitness of male and female offspring for their future environment. Female hormone levels during reproduction are considered a potential mechanism regulating sex allocation in vertebrates: high maternal androgens have repeatedly been linked to increased investment in sons, whereas high glucocorticoid levels are usually related to increased investment in daughters. However, results are not consistent across studies and therefore still inconclusive. In Japanese quail (Coturnix japonica), we previously found that pair-housed females had higher plasma androgen levels and tended to have higher plasma corticosterone levels than group-housed females. In the current study we investigate whether these differences in maternal social environment and physiology affect offspring sex allocation and physiology. Counter to our expectations, we find no effects of the maternal social environment on offspring sex ratio, sex-specific mortality, growth, circulating androgen or corticosterone levels. Also, maternal corticosterone or androgen levels do not correlate with offspring sex ratio or mortality. The social environment during reproduction therefore does not necessarily modify sex allocation and offspring physiology, even if it causes differences in maternal physiology. We propose that maternal effects of the social environment strongly depend upon the type of social stimuli and the timing of changes in the social environment and hormones with respect to the reproductive cycle and meiosis.
Collapse
Affiliation(s)
- Esther M A Langen
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany; Department of Animals in Science and Society, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands.
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany.
| | - Vivian C Goerlich-Jansson
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany; Department of Animals in Science and Society, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
6
|
Langen EMA, von Engelhardt N, Goerlich-Jansson VC. Correction: Social environment during egg laying: Changes in plasma hormones with no consequences for yolk hormones or fecundity in female Japanese quail, Coturnix japonica. PLoS One 2018; 13:e0199115. [PMID: 29889901 PMCID: PMC5995393 DOI: 10.1371/journal.pone.0199115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|