1
|
Hipfner JM, Prill MM, Studholme KR, Domalik AD, Tucker S, Jardine C, Maftei M, Wright KG, Beck JN, Bradley RW, Carle RD, Good TP, Hatch SA, Hodum PJ, Ito M, Pearson SF, Rojek NA, Slater L, Watanuki Y, Will AP, Bindoff AD, Crossin GT, Drever MC, Burg TM. Geolocator tagging links distributions in the non-breeding season to population genetic structure in a sentinel North Pacific seabird. PLoS One 2020; 15:e0240056. [PMID: 33166314 PMCID: PMC7652296 DOI: 10.1371/journal.pone.0240056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (FꞌST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.
Collapse
Affiliation(s)
- J. Mark Hipfner
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
- * E-mail:
| | - Marie M. Prill
- Department of Biology, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Alice D. Domalik
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Strahan Tucker
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Mark Maftei
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Kenneth G. Wright
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessie N. Beck
- Oikonos Ecosystems Knowledge, Santa Cruz, California, United States of America
| | - Russell W. Bradley
- Point Blue Conservation Science, Petaluma, California, United States of America
| | - Ryan D. Carle
- Oikonos Ecosystems Knowledge, Santa Cruz, California, United States of America
| | - Thomas P. Good
- Northwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Scott A. Hatch
- Institute for Seabird Research and Conservation, Anchorage, Alaska, United States of America
| | - Peter J. Hodum
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - Motohiro Ito
- Department of Applied Biosciences, Toyo University, Bunkyō-ku, Japan
| | - Scott F. Pearson
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Nora A. Rojek
- United States Fish and Wildlife Service, Homer, Alaska, United States of America
| | - Leslie Slater
- United States Fish and Wildlife Service, Homer, Alaska, United States of America
| | - Yutaka Watanuki
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Alexis P. Will
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Aidan D. Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn T. Crossin
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark C. Drever
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Theresa M. Burg
- Department of Biology, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Hastings KK, Rehberg MJ, O’corry-Crowe GM, Pendleton GW, Jemison LA, Gelatt TS. Demographic consequences and characteristics of recent population mixing and colonization in Steller sea lions, Eumetopias jubatus. J Mammal 2019. [DOI: 10.1093/jmammal/gyz192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Steller sea lions (Eumetopias jubatus) are composed of two genetically distinct metapopulations (an increasing “eastern” and a reduced and endangered “western” population, or stock for management purposes in U.S. waters) that are only recently mixing at new rookeries in northern Southeast Alaska, east of the current stock boundary. We used mark-recapture models and 18 years of resighting data of over 3,500 individuals marked at the new rookeries and at neighboring long-established rookeries in both populations to examine morphology, survival, and movement patterns of pups born at new rookeries based on whether they had mitochondrial DNA haplotypes from the western or eastern population (mtW or mtE); examine survival effects of dispersal to the Eastern Stock region for animals born in the Western Stock region; and estimate minimum proportions of animals with western genetic material in regions within Southeast Alaska. Pups born at new rookeries with mtW had similar mass, but reduced body condition and first-year survival (approximately −10%) compared to pups with mtE. mtE pups ranged more widely than mtW pups, including more to the sheltered waters of Southeast Alaska’s Inside Passage. Fitness benefits for western-born females that dispersed to Southeast Alaska were observed as higher female survival (+0.127, +0.099, and +0.032 at ages 1, 2, and 3+) and higher survival of their female offspring to breeding age (+0.15) compared to females that remained west of the boundary. We estimated that a minimum of 38% and 13% of animals in the North Outer Coast–Glacier Bay and Lynn Canal–Frederick Sound regions in Southeast Alaska, respectively, carry genetic information unique to the western population. Despite fitness benefits to western females that dispersed east, asymmetric dispersal costs or other genetic or maternal effects may limit the growth of the western genetic lineage at the new rookeries, and these factors require further study.
Collapse
Affiliation(s)
- Kelly K Hastings
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Michael J Rehberg
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | | | - Grey W Pendleton
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Lauri A Jemison
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Thomas S Gelatt
- National Marine Fisheries Service, Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|
3
|
Jemison LA, Pendleton GW, Hastings KK, Maniscalco JM, Fritz LW. Spatial distribution, movements, and geographic range of Steller sea lions (Eumetopias jubatus) in Alaska. PLoS One 2018; 13:e0208093. [PMID: 30586412 PMCID: PMC6306159 DOI: 10.1371/journal.pone.0208093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
The two stocks of Steller sea lions (Eumetopias jubatus) in Alaska include an endangered western stock, recently recovering in parts of its range following decades of decline, and an eastern stock which was removed from the U.S. Endangered Species List in 2013 following increasing numbers since the 1970s. Information on overlapping distributions of eastern and western sea lions is needed for management considerations. We analyzed >30,000 sightings collected from 2000–2014 of 2,385 sea lions that were branded as pups at 10 Alaskan rookeries to examine mesoscale (mostly <500km) spatial distribution, geographic range, and geographic population structure based on natal rookery, sex, and age during breeding and non-breeding seasons. Analyses of summary movement measures (e.g., natal rookery, sex, and age-class differences in spatial distribution and geographic range) indicate wide variation in rookery-specific movement patterns. Correlations between movement measures and population dynamics suggested movement patterns could be a function of density dependence. Animals from larger rookeries, and rookeries with slower population growth and lower survival, had wider dispersion than animals from smaller rookeries, or rookeries with high growth and survival. Sea lions from the largest rookery, Forrester Island, where survival and population trends are lowest, were the most widely distributed. Analysis of geographic population structure indicated that animals born in the eastern Aleutian Islands had the most distinct movements and had little overlap with other western sea lions. Northern Southeast Alaska, within the eastern stock, is the area of greatest overlap between stocks, and is important to western animals, especially those born in Prince William Sound. Detailed knowledge of distribution and movements of western sea lions is useful for defining recovery and population trend analysis regions that better reflect dispersion and population structure and provides valuable information to managers as critical habitat is re-evaluated and the location of the stock boundary reconsidered.
Collapse
Affiliation(s)
- Lauri A Jemison
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Alaska, United States of America
| | - Grey W Pendleton
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Alaska, United States of America
| | - Kelly K Hastings
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Alaska, United States of America
| | - John M Maniscalco
- Department of Science, Alaska SeaLife Center, Seward, Alaska, United States of America
| | - Lowell W Fritz
- Marine Mammal Laboratory, National Marine Fisheries Service, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Hastings KK, Jemison LA, Pendleton GW, Raum-Suryan KL, Pitcher KW. Correction: Natal and breeding philopatry of female Steller sea lions in southeastern Alaska. PLoS One 2018; 13:e0196412. [PMID: 29677218 PMCID: PMC5909906 DOI: 10.1371/journal.pone.0196412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Hastings KK, Jemison LA, Pendleton GW. Survival of adult Steller sea lions in Alaska: senescence, annual variation and covariation with male reproductive success. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170665. [PMID: 29410794 PMCID: PMC5792871 DOI: 10.1098/rsos.170665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Population dynamics of long-lived vertebrates depend critically on adult survival, yet factors affecting survival and covariation between survival and other vital rates in adults remain poorly examined for many taxonomic groups of long-lived mammals (e.g. actuarial senescence has been examined for only 9 of 34 extant pinniped species using longitudinal data). We used mark-recapture models and data from 2795 Steller sea lion (Eumetopias jubatus) pups individually marked at four of five rookeries in southeastern Alaska (SEAK) and resighted for 21 years to examine senescence, annual variability and covariation among life-history traits in this long-lived, sexually dimorphic pinniped. Sexes differed in age of onset (approx. 16-17 and approx. 8-9 years for females and males, respectively), but not rate (-0.047 and -0.046/year of age for females and males) of senescence. Survival of adult males from northern SEAK had greatest annual variability (approx. ±0.30 among years), whereas survival of adult females ranged approximately ±0.10 annually. Positive covariation between male survival and reproductive success was observed. Survival of territorial males was 0.20 higher than that of non-territorial males, resulting in the majority of males alive at oldest ages being territorial.
Collapse
Affiliation(s)
- Kelly K. Hastings
- Alaska Department of Fish and Game, Division of Wildlife Conservation, PO Box 115526, Juneau, AK 99811, USA
| | | | | |
Collapse
|
6
|
Kuhn CE, Chumbley K, Fritz L, Johnson D. Estimating dispersal rates of Steller sea lion (Eumetopias jubatus) mother-pup pairs from a natal rookery using mark-resight data. PLoS One 2017; 12:e0189061. [PMID: 29211808 PMCID: PMC5718514 DOI: 10.1371/journal.pone.0189061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
To monitor population trends of Steller sea lions (Eumetopias jubatus) in Alaska, newborn pups are counted during aerial surveys. These surveys are scheduled to occur after the majority of pups are born, but before pups begin to spend significant time in the water. Some studies have reported dispersal of mother-pup pairs away from breeding beaches during the pupping season (July), which may influence survey results. Using a multistate mark-recapture model with state uncertainty, we estimated the amount of dispersal during the pupping season based on observations of permanently marked sea lions. Research was conducted at land-based observation sites on Marmot Island, Alaska, between 2000 and 2013. Both marked adult females with dependent pups and marked pups were observed at two rookery beaches from May to July. Cumulative dispersal rates were minimal (< 1%) prior to the planned start of the aerial survey (23 June) and increased to 11.2% by the planned survey completion date (10 July). The increased cumulative dispersal rate during the remainder of the observation period (end of July) suggests potential bias in surveys that occur beyond 10 July, however surveys past this date are rare (< 10% between 1973 and 2016). As a result, movements of mother-pup pairs during the pupping season are not likely to influence aerial survey estimates.
Collapse
Affiliation(s)
- Carey E. Kuhn
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
- * E-mail:
| | - Kathryn Chumbley
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Lowell Fritz
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Devin Johnson
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| |
Collapse
|