1
|
Krępski T, Olechowski M, Samborska-Skutnik I, Święcicka M, Grądzielewska A, Rakoczy-Trojanowska M. Identification and characteristics of wheat Lr orthologs in three rye inbred lines. PLoS One 2023; 18:e0288520. [PMID: 37440539 DOI: 10.1371/journal.pone.0288520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The genetic background of the immune response of rye to leaf rust (LR), although extensively studied, is still not well understood. The recent publication of the genome of rye line Lo7 and the development of efficient transcriptomic methods has aided the search for genes that confer resistance to this disease. In this study, we investigated the potential role of rye orthologs of wheat Lr genes (Lr1, Lr10, Lr21, Lr22a, and RGA2/T10rga2-1A) in the LR seedling-stage resistance of inbred rye lines D33, D39, and L318. Bioinformatics analysis uncovered numerous Lr orthologs in the Lo7 genome, namely, 14 ScLr1, 15 ScRga2, and 2 ScLr21 paralogs, and 1 each of ScLr10 and ScLr22a genes. The paralogs of ScLr1, ScRga2, and ScLr21 were structurally different from one another and their wheat counterparts. According to an RNA sequencing analysis, only four wheat Lr gene orthologs identified in the Lo7 genome (ScLr1_3, ScLr1_4, ScLr1_8, and ScRga2_6) were differentially expressed; all four were downregulated after infection with compatible or incompatible isolates of Puccinia recondita f. sp. secalis (Prs). Using a more precise tool, RT-qPCR, we found that two genes were upregulated at 20 h post-infection, namely, ScLr1_4 and ScLr1_8 in lines D33 and D39, respectively, both of which have been found to be resistant to LR under field conditions and after treatment with a semi-compatible Prs strain. We were unable to discern any universal pattern of gene expression after Prs infection; on the contrary, all detected relationships were plant genotype-, Prs isolate-, or time-specific. Nevertheless, at least some Lr orthologs in rye (namely, ScLr1_3 ScLr1_4, ScLr1_8, and ScRga2_6), even though mainly downregulated, may play an important role in the response of rye to LR.
Collapse
Affiliation(s)
- Tomasz Krępski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Olechowski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Izabela Samborska-Skutnik
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
3
|
Zhang H, Zeng C, Li L, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Wu D, Cheng Y, Zhang H, Chen G, Zhou Y, Kang H. RNA-seq analysis revealed considerable genetic diversity and enabled the development of specific KASP markers for Psathyrostachys huashanica. FRONTIERS IN PLANT SCIENCE 2023; 14:1166710. [PMID: 37063223 PMCID: PMC10097992 DOI: 10.3389/fpls.2023.1166710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Psathyrostachys huashanica, which grows exclusively in Huashan, China, is an important wild relative of common wheat that has many desirable traits relevant for wheat breeding. However, the poorly characterized interspecific phylogeny and genomic variations and the relative lack of species-specific molecular markers have limited the utility of P. huashanica as a genetic resource for enhancing wheat germplasm. In this study, we sequenced the P. huashanica transcriptome, resulting in 50,337,570 clean reads that were assembled into 65,617 unigenes, of which 38,428 (58.56%) matched at least one sequence in public databases. The phylogenetic analysis of P. huashanica, Triticeae species, and Poaceae species was conducted using 68 putative orthologous gene clusters. The data revealed the distant evolutionary relationship between P. huashanica and common wheat as well as the substantial diversity between the P. huashanica genome and the wheat D genome. By comparing the transcriptomes of P. huashanica and Chinese Spring, 750,759 candidate SNPs between P. huashanica Ns genes and their common wheat orthologs were identified. Among the 90 SNPs in the exon regions with different functional annotations, 58 (64.4%) were validated as Ns genome-specific SNPs in the common wheat background by KASP genotyping assays. Marker validation analyses indicated that six specific markers can discriminate between P. huashanica and the other wheat-related species. In addition, five markers are unique to P. huashanica, P. juncea, and Leymus species, which carry the Ns genome. The Ns genome-specific markers in a wheat background were also validated regarding their specificity and stability for detecting P. huashanica chromosomes in four wheat-P. huashanica addition lines. Four and eight SNP markers were detected in wheat-P. huashanica 2Ns and 7Ns addition lines, respectively, and one marker was specific to both wheat-P. huashanica 3Ns, 4Ns, and 7Ns addition lines. These markers developed using transcriptome data may be used to elucidate the genetic relationships among Psathyrostachys, Leymus, and other closely-related species. They may also facilitate precise introgressions and the high-throughput monitoring of P. huashanica exogenous chromosomes or segments in future crop breeding programs.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunyan Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liangxi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
An Overview of Molecular Basis and Genetic Modification of Floral Organs Genes: Impact of Next-Generation Sequencing. Mol Biotechnol 2022; 65:833-848. [DOI: 10.1007/s12033-022-00633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
|
5
|
House MA, Young LW, Robinson SJ, Booker HM. Transcriptomic Analysis of Early Flowering Signals in ‘Royal’ Flax. PLANTS 2022; 11:plants11070860. [PMID: 35406840 PMCID: PMC9002848 DOI: 10.3390/plants11070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Canada is one of the world’s leading producers and exporters of flax seed, with most production occurring in the Prairie Provinces. However, reduced season length and risk of frost restricts production in the northern grain belt of the Canadian Prairies. To expand the growing region of flax and increase production in Canada, flax breeders need to develop earlier-flowering varieties capable of avoiding the risk of abiotic stress. A thorough understanding of flowering control of flax is essential for the efficient breeding of such lines. We identified 722 putative flax flowering genes that span all major flowering-time pathways. Frequently, we found multiple flax homologues for a single Arabidopsis flowering gene. We used RNA sequencing to quantify the expression of genes in the shoot apical meristem (SAM) at 10, 15, 19, and 29 days after planting (dap) using the ‘Royal’ cultivar. We observed the expression of 80% of putative flax flowering genes and the differential expression of only 30%; these included homologues of major flowering regulators, such as SOC1, FUL, and AP1. We also found enrichment of differentially expressed genes (DEGs) in transcription factor (TF) families involved in flowering. Finally, we identified the candidates’ novel flowering genes amongst the uncharacterized flax genes. Our transcriptomic dataset provides a useful resource for investigating the regulatory control of the transition to flowering in flax and for the breeding of northern-adapted varieties.
Collapse
Affiliation(s)
- Megan A. House
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada; (M.A.H.); (L.W.Y.)
| | - Lester W. Young
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada; (M.A.H.); (L.W.Y.)
| | - Stephen J. Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada;
| | - Helen M. Booker
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada; (M.A.H.); (L.W.Y.)
- Department of Plant Agriculture, Ontario Agricultural College, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 56829)
| |
Collapse
|
6
|
Zheng Y, Wang N, Zhang Z, Liu W, Xie W. Identification of Flowering Regulatory Networks and Hub Genes Expressed in the Leaves of Elymus sibiricus L. Using Comparative Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:877908. [PMID: 35651764 PMCID: PMC9150504 DOI: 10.3389/fpls.2022.877908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
Flowering is a significant stage from vegetative growth to reproductive growth in higher plants, which impacts the biomass and seed yield. To reveal the flowering time variations and identify the flowering regulatory networks and hub genes in Elymus sibiricus, we measured the booting, heading, and flowering times of 66 E. sibiricus accessions. The booting, heading, and flowering times varied from 136 to 188, 142 to 194, and 148 to 201 days, respectively. The difference in flowering time between the earliest- and the last-flowering accessions was 53 days. Furthermore, transcriptome analyses were performed at the three developmental stages of six accessions with contrasting flowering times. A total of 3,526 differentially expressed genes (DEGs) were predicted and 72 candidate genes were identified, including transcription factors, known flowering genes, and plant hormone-related genes. Among them, four candidate genes (LATE, GA2OX6, FAR3, and MFT1) were significantly upregulated in late-flowering accessions. LIMYB, PEX19, GWD3, BOR7, PMEI28, LRR, and AIRP2 were identified as hub genes in the turquoise and blue modules which were related to the development time of flowering by weighted gene co-expression network analysis (WGCNA). A single-nucleotide polymorphism (SNP) of LIMYB found by multiple sequence alignment may cause late flowering. The expression pattern of flowering candidate genes was verified in eight flowering promoters (CRY, COL, FPF1, Hd3, GID1, FLK, VIN3, and FPA) and four flowering suppressors (CCA1, ELF3, Ghd7, and COL4) under drought and salt stress by qRT-PCR. The results suggested that drought and salt stress activated the flowering regulation pathways to some extent. The findings of the present study lay a foundation for the functional verification of flowering genes and breeding of new varieties of early- and late-flowering E. sibiricus.
Collapse
Affiliation(s)
- Yuying Zheng
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Na Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Wengang Xie
| |
Collapse
|
7
|
Xia Y, Xue B, Shi M, Zhan F, Wu D, Jing D, Wang S, Guo Q, Liang G, He Q. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat. PLoS One 2020; 15:e0239382. [PMID: 33031442 PMCID: PMC7544058 DOI: 10.1371/journal.pone.0239382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Floral initiation plays a critical role for reproductive success in plants, especially fruit trees. However, little information is known on the mechanism of the initiation in loquat (Eriobotrya japonica Lindl.). Here, we used transcriptomic, expression and functional analysis to investigate the candidate genes in floral initiation in loquat. Comparative transcriptome analysis showed differentially expressed genes (DEGs) were mainly enriched in the metabolic pathways of plant hormone signal transduction. The DEGs were mainly involved in the gibberellin, auxin, cytokinin, abscisic acid, salicylic acid and ethylene signaling pathways. Meanwhile, some transcription factors, including MADS-box (MCM1, AGAMOUS, DEFICIENS and SRF), MYB (Myeloblastosis), TCP (TEOSINTE BRANCHED 1, CYCLOIDEA and PCF1), WOX (WUSCHEL-related homeobox) and WRKY (WRKY DNA-binding protein), were significantly differentially expressed. Among these key DEGs, we confirmed that an AGL17 ortholog EjAGL17 was significantly upregulated at the flower bud transition stage. Phylogenetic tree analysis revealed that EjAGL17 was grouped into an AGL17 clade of MADS-box transcription factors. Protein sequence alignment showed that EjAGL17 included a distinctive C-terminal domain. Subcellular localization of EjAGL17 was found only in the nucleus. Expression levels of EjAGL17 reached the highest at the development stage of flower bud transition. Moreover, ectopic expression of EjAGL17 in Arabidopsis significantly exhibited early flowering. Our study provides abundant resources of candidate genes for studying the mechanisms underlying the floral initiation in loquat and other Rosaceae species.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Baogui Xue
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Feng Zhan
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
- * E-mail: (GL); (QH)
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing, China
- * E-mail: (GL); (QH)
| |
Collapse
|
8
|
Baral K, Coulman B, Biligetu B, Fu YB. Advancing crested wheatgrass [Agropyron cristatum (L.) Gaertn.] breeding through genotyping-by-sequencing and genomic selection. PLoS One 2020; 15:e0239609. [PMID: 33031422 PMCID: PMC7544028 DOI: 10.1371/journal.pone.0239609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Crested wheatgrass [Agropyron cristatum (L.) Gaertn.] provides high quality, highly palatable forage for early season grazing. Genetic improvement of crested wheatgrass has been challenged by its complex genome, outcrossing nature, long breeding cycle, and lack of informative molecular markers. Genomic selection (GS) has potential for improving traits of perennial forage species, and genotyping-by-sequencing (GBS) has enabled the development of genome-wide markers in non-model polyploid plants. An attempt was made to explore the utility of GBS and GS in crested wheatgrass breeding. Sequencing and phenotyping 325 genotypes representing 10 diverse breeding lines were performed. Bioinformatics analysis identified 827, 3,616, 14,090 and 46,136 single nucleotide polymorphism markers at 20%, 30%, 40% and 50% missing marker levels, respectively. Four GS models (BayesA, BayesB, BayesCπ, and rrBLUP) were examined for the accuracy of predicting nine agro-morphological and three nutritive value traits. Moderate accuracy (0.20 to 0.32) was obtained for the prediction of heading days, leaf width, plant height, clump diameter, tillers per plant and early spring vigor for genotypes evaluated at Saskatoon, Canada. Similar accuracy (0.29 to 0.35) was obtained for predicting fall regrowth and plant height for genotypes evaluated at Swift Current, Canada. The Bayesian models displayed similar or higher accuracy than rrBLUP. These findings show the feasibility of GS application for a non-model species to advance plant breeding.
Collapse
Affiliation(s)
- Kiran Baral
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bruce Coulman
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bill Biligetu
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Ke YT, Lin KF, Gu CH, Yeh CH. Molecular Characterization and Expression Profile of PaCOL1, a CONSTANS-like Gene in Phalaenopsis Orchid. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9010068. [PMID: 31947959 PMCID: PMC7020484 DOI: 10.3390/plants9010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
CONSTANS (CO) and CONSTANS-like (COL) genes play important roles in coalescing signals from photoperiod and temperature pathways. However, the mechanism of CO and COLs involved in regulating the developmental stage transition and photoperiod/temperature senescing remains unclear. In this study, we identified a COL ortholog gene from the Taiwan native orchid Phalaenopsis aphrodite. The Phalaenopsis aphrodite CONSTANS-like 1 (PaCOL1) belongs to the B-box protein family and functions in the nucleus and cytosol. Expression profile analysis of Phalaenopsis aphrodite revealed that PaCOL1 was significantly expressed in leaves, but its accumulation was repressed during environmental temperature shifts. We found a differential profile for PaCOL1 accumulation, with peak accumulation at late afternoon and at the middle of the night. Arabidopsis with PaCOL1 overexpression showed earlier flowering under short-day (SD) conditions (8 h/23 °C light and 16 h/23 °C dark) but similar flowering time under long-day (LD) conditions (16 h/23 °C light and 8 h/23 °C dark). Transcriptome sequencing revealed several genes upregulated in PaCOL1-overexpressing Arabidopsis plants that were previously involved in flowering regulation of the photoperiod pathway. Yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) analysis revealed that PaCOL1 could interact with a crucial clock-associated regulator, AtCCA1, and a flowering repressor, AtFLC. Furthermore, expressing PaCOL1 in cca1.lhy partially reversed the mutant flowering time under photoperiod treatment, which confirms the role of PaCOL1 function in the rhythmic associated factors for modulating flowering.
Collapse
|
10
|
Baral K, Coulman B, Biligetu B, Fu YB. Genotyping-by-Sequencing Enhances Genetic Diversity Analysis of Crested Wheatgrass [ Agropyron cristatum (L.) Gaertn.]. Int J Mol Sci 2018; 19:ijms19092587. [PMID: 30200310 PMCID: PMC6163524 DOI: 10.3390/ijms19092587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022] Open
Abstract
Molecular characterization of unsequenced plant species with complex genomes is now possible by genotyping-by-sequencing (GBS) using recent next generation sequencing technologies. This study represents the first use of GBS application to sample genome-wide variants of crested wheatgrass [Agropyron cristatum (L.) Gaertn.] and assess the genetic diversity present in 192 genotypes from 12 tetraploid lines. Bioinformatic analysis identified 45,507 single nucleotide polymorphism (SNP) markers in this outcrossing grass species. The model-based Bayesian analysis revealed four major clusters of the samples assayed. The diversity analysis revealed 15.8% of SNP variation residing among the 12 lines, and 12.1% SNP variation present among four genetic clusters identified by the Bayesian analysis. The principal coordinates analysis and dendrogram were able to distinguish four lines of Asian origin from Canadian cultivars and breeding lines. These results serve as a valuable resource for understanding genetic variability, and will aid in the genetic improvement of this outcrossing polyploid grass species for forage production. These findings illustrate the potential of GBS application in the characterization of non-model polyploid plants with complex genomes.
Collapse
Affiliation(s)
- Kiran Baral
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Bruce Coulman
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Bill Biligetu
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
11
|
RNA-Seq Analysis of Plant Maturity in Crested Wheatgrass (Agropyron cristatum L.). Genes (Basel) 2017; 8:genes8110291. [PMID: 29068370 PMCID: PMC5704204 DOI: 10.3390/genes8110291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum L.) breeding programs aim to develop later maturing cultivars for extending early spring grazing in Western Canada. Plant maturity is a complex genetic trait, and little is known about genes associated with late maturity in this species. An attempt was made using RNA-Seq to profile the transcriptome of crested wheatgrass maturity and to analyze differentially expressed genes (DEGs) between early and late maturing lines. Three cDNA libraries for each line were generated by sampling leaves at the stem elongation stage, spikes at the boot and anthesis stages. A total of 75,218,230 and 74,015,092 clean sequence reads were obtained for early and late maturing lines, respectively. De novo assembly of all sequence reads generated 401,587 transcripts with a mean length of 546 bp and N50 length of 691 bp. Out of 13,133 DEGs detected, 22, 17, and eight flowering related DEGs were identified for the three stages, respectively. Twelve DEGs, including nine flowering related DEGs at the stem elongation stage were further confirmed by qRT-PCR. The analysis of homologous genes of the photoperiod pathway revealed their lower expression in the late maturing line at the stem elongation stage, suggesting that their differential expression contributed to late maturity in crested wheatgrass.
Collapse
|