1
|
Al Shboul S, Singh A, Kobetic R, Goodlett DR, Brennan PM, Hupp T, Dapic I. Mass Spectrometry Advances in Analysis of Glioblastoma. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39529217 DOI: 10.1002/mas.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Some cancers such as glioblastoma (GBM), show minimal response to medical interventions, often only capable of mitigating tumor growth or alleviating symptoms. High metabolic activity in the tumor microenvironment marked by immune responses and hypoxia, is a crucial factor driving tumor progression. The many developments in mass spectrometry (MS) over the last decades have provided a pivotal tool for studying proteins, along with their posttranslational modifications. It is known that the proteomic landscape of GBM comprises a wide range of proteins involved in cell proliferation, survival, migration, and immune evasion. Combination of MS imaging and microscopy has potential to reveal the spatial and molecular characteristics of pathological tissue sections. Moreover, integration of MS in the surgical process in form of techniques such as DESI-MS or rapid evaporative ionization MS has been shown as an effective tool for rapid measurement of metabolite profiles, providing detailed information within seconds. In immunotherapy-related research, MS plays an indispensable role in detection and targeting of cancer antigens which serve as a base for antigen-specific therapies. In this review, we aim to provide detailed information on molecular profile in GBM and to discuss recent MS advances and their clinical benefits for targeting this aggressive disease.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
2
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
3
|
Kohler D, Tsai TH, Verschueren E, Huang T, Hinkle T, Phu L, Choi M, Vitek O. MSstatsPTM: Statistical Relative Quantification of Posttranslational Modifications in Bottom-Up Mass Spectrometry-Based Proteomics. Mol Cell Proteomics 2023; 22:100477. [PMID: 36496144 PMCID: PMC9860394 DOI: 10.1016/j.mcpro.2022.100477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Liquid chromatography coupled with bottom-up mass spectrometry (LC-MS/MS)-based proteomics is increasingly used to detect changes in posttranslational modifications (PTMs) in samples from different conditions. Analysis of data from such experiments faces numerous statistical challenges. These include the low abundance of modified proteoforms, the small number of observed peptides that span modification sites, and confounding between changes in the abundance of PTM and the overall changes in the protein abundance. Therefore, statistical approaches for detecting differential PTM abundance must integrate all the available information pertaining to a PTM site and consider all the relevant sources of confounding and variation. In this manuscript, we propose such a statistical framework, which is versatile, accurate, and leads to reproducible results. The framework requires an experimental design, which quantifies, for each sample, both peptides with PTMs and peptides from the same proteins with no modification sites. The proposed framework supports both label-free and tandem mass tag-based LC-MS/MS acquisitions. The statistical methodology separately summarizes the abundances of peptides with and without the modification sites, by fitting separate linear mixed effects models appropriate for the experimental design. Next, model-based inferences regarding the PTM and the protein-level abundances are combined to account for the confounding between these two sources. Evaluations on computer simulations, a spike-in experiment with known ground truth, and three biological experiments with different organisms, modification types, and data acquisition types demonstrate the improved fold change estimation and detection of differential PTM abundance, as compared to currently used approaches. The proposed framework is implemented in the free and open-source R/Bioconductor package MSstatsPTM.
Collapse
Affiliation(s)
- Devon Kohler
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio, USA
| | - Erik Verschueren
- ULUA BV, Antwerp, Belgium; MPL, Genentech, South San Francisco, California, USA
| | - Ting Huang
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Trent Hinkle
- MPL, Genentech, South San Francisco, California, USA
| | - Lilian Phu
- MPL, Genentech, South San Francisco, California, USA
| | - Meena Choi
- MPL, Genentech, South San Francisco, California, USA.
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Šikić K, Peters TMA, Marušić E, Čagalj IČ, Ramadža DP, Žigman T, Fumić K, Fernandez E, Gevaert K, Debeljak Ž, Wevers RA, Barić I. Abnormal concentrations of acetylated amino acids in cerebrospinal fluid in acetyl-CoA transporter deficiency. J Inherit Metab Dis 2022; 45:1048-1058. [PMID: 35999711 DOI: 10.1002/jimd.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/11/2022]
Abstract
Acetyl-CoA transporter 1 (AT-1) is a transmembrane protein which regulates influx of acetyl-CoA from the cytosol to the lumen of the endoplasmic reticulum and is therefore important for the posttranslational modification of numerous proteins. Pathological variants in the SLC33A1 gene coding for AT-1 have been linked to a disorder called Huppke-Brendel syndrome, which is characterized by congenital cataracts, hearing loss, severe developmental delay and early death. It has been described in eight patients so far, who all had the abovementioned symptoms together with low serum copper and ceruloplasmin concentrations. The link between AT-1 and low ceruloplasmin concentrations is not clear, nor is the complex pathogenesis of the disease. Here we describe a further case of Huppke-Brendel syndrome with a novel and truncating homozygous gene variant and provide novel biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma. Our results indicate that decreased levels of many N-acetylated amino acids in CSF are a typical metabolic fingerprint for AT-1 deficiency and are potential biomarkers for the defect. As acetyl-CoA is an important substrate for protein acetylation, we performed N-terminal proteomics, but found only minor effects on this particular protein modification. The acetyl-CoA content in patient's fibroblasts was insignificantly decreased. Our data may help to better understand the mechanisms underlying the metabolic disturbances, the pathophysiology and the clinical phenotype of the disease.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tessa M A Peters
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eugenija Marušić
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Ivana Čulo Čagalj
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Tamara Žigman
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ksenija Fumić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esperanza Fernandez
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Davydov DR, Dangi B, Yue G, Ahire DS, Prasad B, Zgoda VG. Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry. Biomolecules 2022; 12:biom12020185. [PMID: 35204686 PMCID: PMC8869672 DOI: 10.3390/biom12020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.
Collapse
Affiliation(s)
- Dmitri R. Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
- Correspondence:
| | - Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Guihua Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Deepak S. Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Victor G. Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia;
| |
Collapse
|
6
|
Naryzny SN, Legina OK. Haptoglobin as a Biomarker. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2021; 15:184-198. [PMID: 34422226 PMCID: PMC8365284 DOI: 10.1134/s1990750821030069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S. N. Naryzny
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| | - O. K. Legina
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| |
Collapse
|
7
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Zavialova M, Zgoda V, Klopov N, Legina O, Pantina R. Evaluation of Haptoglobin and Its Proteoforms as Glioblastoma Markers. Int J Mol Sci 2021; 22:6533. [PMID: 34207114 PMCID: PMC8234662 DOI: 10.3390/ijms22126533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that plays a critical role in tissue protection and the prevention of oxidative damage. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein and is the subject of research as a potential biomarker of many diseases, including malignant neoplasms. The Human Hp gene is polymorphic and controls the synthesis of three major phenotypes-homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). Glioblastoma multiform (GBM) is the most malignant primary brain tumor. In our study, we have analyzed the state of Hp proteoforms in plasma and cells using 1D (SDS-PAGE) and 2D electrophoresis (2DE) with the following mass spectrometry (LC ES-MS/MS) or Western blotting. We found that the levels of α2- and β-chain proteoforms are up-regulated in the plasma of GBM patients. An unprocessed form of Hp2-2 (PreHp2-2, zonulin) with unusual biophysical parameters (pI/Mw) was also detected in the plasma of GBM patients and glioblastoma cells. Altogether, this data shows the possibility to use proteoforms of haptoglobin as a potential GBM-specific plasma biomarker.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Natalia Ronzhina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Fedor Kabachenko
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Maria Zavialova
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia; (E.Z.); (M.Z.); (V.Z.)
| | - Nikolai Klopov
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Olga Legina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| | - Rimma Pantina
- National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; (N.R.); (N.K.); (O.L.); (R.P.)
| |
Collapse
|
8
|
Abstract
Biomarkers factor into the diagnosis and treatment of almost every patient with cancer. The innovation in proteomics follows improvement of mass spectrometry techniques and data processing strategy. Recently, proteomics and typical biological studies have been the answer for clinical applications. The clinical proteomics techniques are now actively adapted to protein identification in large patient cohort, biomarker development for more sensitive and specific screening based on quantitative data. And, it is important for clinical, translational researchers to be acutely aware of the issues surrounding appropriate biomarker development, in order to facilitate entry of clinically useful biomarkers into the clinic. Here, we discuss in detail include the case research for clinical proteomics. Furthermore, we give an overview on the current developments and novel findings in proteomics-based cancer biomarker research.
Collapse
|
9
|
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| | - O K Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
10
|
Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021; 199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Systems biology adopted functional and integrative multiomics approaches enable to discover the whole set of interacting regulatory components such as genes, transcripts, proteins, metabolites, and metabolite dependent protein modifications. This interactome build up the midpoint of protein-protein/PTM, protein-DNA/RNA, and protein-metabolite network in a cell. As the key drivers in cellular metabolism, metabolites are precursors and regulators of protein post-translational modifications [PTMs] that affect protein diversity and functionality. The precisely orchestrated core pattern of metabolic networks refer to paradigm 'metabolites regulate PTMs, PTMs regulate enzymes, and enzymes modulate metabolites' through a multitude of feedback and feed-forward pathway loops. The concept represents a flawless PTM-metabolite-enzyme(protein) regulomics underlined in reprogramming cancer metabolism. Immense interconnectivity of those biomolecules in their spectacular network of intertwined metabolic pathways makes integrated proteomics and metabolomics an excellent opportunity, and the central component of integrative multiomics framework. It will therefore be of significant interest to integrate global proteome and PTM-based proteomics with metabolomics to achieve disease related altered levels of those molecules. Thereby, present update aims to highlight role and analysis of interacting metabolites/oncometabolites, and metabolite-regulated PTMs loop which may function as translational monitoring biomarkers along the reprogramming continuum of oncometabolism.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey.
| | - Abdullah Karadag
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey
| |
Collapse
|
11
|
Chen L, Qin D, Guo X, Wang Q, Li J. Putting Proteomics Into Immunotherapy for Glioblastoma. Front Immunol 2021; 12:593255. [PMID: 33708196 PMCID: PMC7940695 DOI: 10.3389/fimmu.2021.593255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
In glioblastoma, the most aggressive brain cancer, a complex microenvironment of heterogeneity and immunosuppression, are considerable hurdles to classify the subtypes and promote treatment progression. Treatments for glioblastoma are similar to standard therapies for many other cancers and do not effectively prolong the survival of patients, due to the unique location and heterogeneous characteristics of glioblastoma. Immunotherapy has shown a promising effect for many other tumors, but its application for glioma still has some challenges. The recent breakthrough of high-throughput liquid chromatography-mass spectrometry (LC-MS/MS) systems has allowed researchers to update their strategy for identifying and quantifying thousands of proteins in a much shorter time with lesser effort. The protein maps can contribute to generating a complete map of regulatory systems to elucidate tumor mechanisms. In particular, newly developed unicellular proteomics could be used to determine the microenvironment and heterogeneity. In addition, a large scale of differentiated proteins provides more ways to precisely classify tumor subtypes and construct a larger library for biomarkers and biotargets, especially for immunotherapy. A series of advanced proteomic studies have been devoted to the different aspects of immunotherapy for glioma, including monoclonal antibodies, oncolytic viruses, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) T cells. Thus, the application of proteomics in immunotherapy may accelerate research on the treatment of glioblastoma. In this review, we evaluate the frontline applications of proteomics strategies for immunotherapy in glioblastoma research.
Collapse
Affiliation(s)
- Liangyu Chen
- Department of Proteomics, Tianjin Enterprise Key Laboratory of Clinical Multi-omics, Tianjin, China
| | - Di Qin
- Department of Proteomics, Tianjin Enterprise Key Laboratory of Clinical Multi-omics, Tianjin, China
| | - Xinyu Guo
- Department of Proteomics, Tianjin Enterprise Key Laboratory of Clinical Multi-omics, Tianjin, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Li
- Department of Proteomics, Tianjin Enterprise Key Laboratory of Clinical Multi-omics, Tianjin, China
| |
Collapse
|
12
|
Does Proteomic Mirror Reflect Clinical Characteristics of Obesity? J Pers Med 2021; 11:jpm11020064. [PMID: 33494491 PMCID: PMC7912072 DOI: 10.3390/jpm11020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.
Collapse
|
13
|
Kisrieva YS, Samenkova NF, Larina OB, Zgoda VG, Karuzina II, Rusanov AL, Luzgina NG, Petushkova NA. [Comparative study of the human keratinocytes proteome of the HaCaT line: identification of proteins encoded by genes of 18 chromosomes under the influence of detergents]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:469-476. [PMID: 33372905 DOI: 10.18097/pbmc20206606469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using electrospray ionization tandem mass spectrometry, a comparative analysis of the HaCaT keratinocyte proteins encoded by the 18th chromosome was performed before and after exposure to sodium dodecyl sulfate (25 mg/ml) and to Triton X-100 (12.5 mg/ml) in a subtoxic dose for 48 hours. Proteins were identified using the SearchGUI platform (X!Tandem and MS-GF+ search engines). In total, 1284 proteins were found in immortalized human HaCaT keratinocytes and about 75% of them were identified by two or more peptides. Were identified, that 26 proteins were encoded by genes of chromosome 18. Among these proteins, 17 were common for control cells and HaCaT cells treated with SDS. Proteins MARE2 and CTIF were identified only in control keratinocytes. Seven identified proteins encoded by genes of chromosome 18 were found only in detergent-treated keratinocytes: LMAN1, NDUV2, SPB3, VPS4B, KDSR, ROCK1 and RHG28.
Collapse
Affiliation(s)
- Y S Kisrieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - O B Larina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - N G Luzgina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
14
|
Glycation Leads to Increased Polysialylation and Promotes the Metastatic Potential of Neuroblastoma Cells. Cells 2020; 9:cells9040868. [PMID: 32252464 PMCID: PMC7226752 DOI: 10.3390/cells9040868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the second most frequent extracranial tumor, affecting young children worldwide. One hallmark of tumors such as neuroblastomas, is the expression of polysialic acid, which interferes with adhesion and may promote invasion and metastasis. Since tumor cells use glycolysis for energy production, they thereby produce as side product methylglyoxal (MGO), which reacts with proteins to advanced glycation end products in a mechanism called glycation. Here we analyzed the expression of (poly) sialic acid and adhesion of Kelly neuroblastoma cells after glycation with MGO. We found that both sialylation and polysialylation is increased after glycation. Furthermore, glycated Kelly neuroblastoma cells had a much higher potential for migration and invasion compared with non-glycated cells.
Collapse
|
15
|
Dong Z, Cui H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel) 2020; 12:E736. [PMID: 32244981 PMCID: PMC7140112 DOI: 10.3390/cancers12030736] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a grade IV glioma that is the most malignant brain tumor type. Currently, there are no effective and sufficient therapeutic strategies for its treatment because its pathological mechanism is not fully characterized. With the fast development of the Next Generation Sequencing (NGS) technology, more than 170 kinds of covalent ribonucleic acid (RNA) modifications are found to be extensively present in almost all living organisms and all kinds of RNAs, including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and messenger RNAs (mRNAs). RNA modifications are also emerging as important modulators in the regulation of biological processes and pathological progression, and study of the epi-transcriptome has been a new area for researchers to explore their connections with the initiation and progression of cancers. Recently, RNA modifications, especially m6A, and their RNA-modifying proteins (RMPs) such as methyltransferase like 3 (METTL3) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), have also emerged as important epigenetic mechanisms for the aggressiveness and malignancy of GBM, especially the pluripotency of glioma stem-like cells (GSCs). Although the current study is just the tip of an iceberg, these new evidences will provide new insights for possible GBM treatments. In this review, we summarize the recent studies about RNA modifications, such as N6-methyladenosine (m6A), N6,2'O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), N1-methyladenosine (m1A), inosine (I) and pseudouridine (ψ) as well as the corresponding RMPs including the writers, erasers and readers that participate in the tumorigenesis and development of GBM, so as to provide some clues for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
16
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
17
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
18
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
19
|
Lisitsa AV, Petushkova NA, Levitsky LI, Zgoda VG, Larina OV, Kisrieva YS, Frankevich VE, Gamidov SI. Comparative Analysis of the Performаnce of Mascot and IdentiPy Algorithms on a Benchmark Dataset Obtained by Tandem Mass Spectrometry Analysis of Testicular Biopsies. Mol Biol 2019. [DOI: 10.1134/s0026893319010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Kisrieva YS, Petushkova NA, Samenkova NF, Kuznetsova GP, Larina OB, Teryaeva NB, Usachev DY, Zgoda VG, Karuzina II. [Comparative analysis of post-translational modifications in plasma proteome of patients with cerebral ischemia based on HPLC-MS/MS method]. BIOMEDITSINSKAIA KHIMIIA 2019; 65:251-258. [PMID: 31258150 DOI: 10.18097/pbmc20196503251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The relative differences between post-translational modifications (PTM) of proteins in blood plasma samples of patients with cerebral ischemia (CI) and healthy people were investigated using of the method of label-free comparative proteomic analysis based on the technology of tandem HPLC-MS/MS. For PTM detection we used multiple MS/MS search in the database Mascot for variable PTM and Progenesis LS-MS software. In the CI plasma samples, we observed an increase in the proportion of peptides with such PTM as phosphorylation of serine, threonine, and tyrosine, acetylation of lysine and protein N-term, ubiquitination of lysine and deamidation of glutamine related to clinically significant processes were revealed.
Collapse
Affiliation(s)
- Y S Kisrieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - O B Larina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N B Teryaeva
- Burdenko Institute of Neurosurgery, Moscow, Russia
| | - D Yu Usachev
- Burdenko Institute of Neurosurgery, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
21
|
Pascovici D, Wu JX, McKay MJ, Joseph C, Noor Z, Kamath K, Wu Y, Ranganathan S, Gupta V, Mirzaei M. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. Int J Mol Sci 2018; 20:E16. [PMID: 30577541 PMCID: PMC6337699 DOI: 10.3390/ijms20010016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications (PTMs) can occur soon after translation or at any stage in the lifecycle of a given protein, and they may help regulate protein folding, stability, cellular localisation, activity, or the interactions proteins have with other proteins or biomolecular species. PTMs are crucial to our functional understanding of biology, and new quantitative mass spectrometry (MS) and bioinformatics workflows are maturing both in labelled multiplexed and label-free techniques, offering increasing coverage and new opportunities to study human health and disease. Techniques such as Data Independent Acquisition (DIA) are emerging as promising approaches due to their re-mining capability. Many bioinformatics tools have been developed to support the analysis of PTMs by mass spectrometry, from prediction and identifying PTM site assignment, open searches enabling better mining of unassigned mass spectra-many of which likely harbour PTMs-through to understanding PTM associations and interactions. The remaining challenge lies in extracting functional information from clinically relevant PTM studies. This review focuses on canvassing the options and progress of PTM analysis for large quantitative studies, from choosing the platform, through to data analysis, with an emphasis on clinically relevant samples such as plasma and other body fluids, and well-established tools and options for data interpretation.
Collapse
Affiliation(s)
- Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Chitra Joseph
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yunqi Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
22
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
23
|
Petushkova NA, Rusanov AL, Zgoda VG, Pyatnitskiy MA, Larina OV, Nakhod KV, Luzgina NG, Lisitsa AV. Proteome of the human HaCaT keratinocytes: Identification of the oxidative stress proteins after sodium dodecyl sulpfate exposur. Mol Biol 2017. [DOI: 10.1134/s0026893317050259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|