1
|
Monkhouse H, Deane JE. Linking glycosphingolipid metabolism to disease-related changes in the plasma membrane proteome. Biochem Soc Trans 2024; 52:2477-2486. [PMID: 39641585 DOI: 10.1042/bst20240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Glycosphingolipids (GSLs) are vital components of the plasma membrane (PM), where they play crucial roles in cell function. GSLs form specialised membrane microdomains that organise lipids and proteins into functional platforms for cell adhesion and signalling. GSLs can also influence the function of membrane proteins and receptors, via direct protein-lipid interactions thereby affecting cell differentiation, proliferation, and apoptosis. Research into GSL-related diseases has primarily focussed on lysosomal storage disorders, where defective enzymes lead to the accumulation of GSLs within lysosomes, causing cellular dysfunction and disease. However, recent studies are uncovering the broader cellular impact of GSL imbalances including on a range of organelles and cellular compartments such as the mitochondria, endoplasmic reticulum and PM. In this review we describe the mechanisms by which GSL imbalances can influence the PM protein composition and explore examples of the changes that have been observed in the PM proteome upon GSL metabolic disruption. Identifying and understanding these changes to the PM protein composition will enable a more complete understanding of lysosomal storage diseases and provide new insights into the pathogenesis of other GSL-related diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Holly Monkhouse
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| |
Collapse
|
2
|
Ketata I, Ellouz E. From pathological mechanisms in Krabbe disease to cutting-edge therapy: A comprehensive review. Neuropathology 2024; 44:255-277. [PMID: 38444347 DOI: 10.1111/neup.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Since its initial documentation by Knud Krabbe in 1916, numerous studies have scrutinized the characteristics of Krabbe disease (KD) until the identification of the mutation in the GALC gene. In alignment with that, we investigated the natural history of KD spanning eight decades to gain a deeper understanding of the evolutionary trajectory of its mechanisms. Through our comprehensive analysis, we unearthed additional novel elements in molecular biology involving the micropathological mechanism of the disease. This review offers an updated perspective on the metabolic disorder that defines KD. Recently, extracellular vesicles (EVs), autophagy impairment, and α-synuclein have emerged as pivotal players in the neuropathological processes. EVs might serve as a cellular mechanism to avoid or alleviate the detrimental impacts of excessive toxic psychosine levels, and extracting EVs could contribute to synapse dysfunction. Autophagy impairment was found to be independent of psychosine and reliant on AKT and B-cell lymphoma 2. Additionally, α-synuclein has been recognized for inducing cellular death and dysfunction in common biological pathways. Our objective is to assess the effectiveness of advanced therapies in addressing this particular condition. While hematopoietic stem cells have been a primary treatment, its administration proves challenging, particularly in the presymptomatic phase. In this review, we have compiled information from over 10 therapy trials, comparing them based on their benefits and disadvantage.
Collapse
Affiliation(s)
- Imen Ketata
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Emna Ellouz
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
3
|
Signorini C, Pannuzzo G, Graziano ACE, Moretti E, Collodel G, Cardile V. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Delays the Phenotypic Manifestation of Krabbe Disease and Partially Restores Lipid Mediator Production in the Brain-Study in a Mouse Model of the Disease. Int J Mol Sci 2024; 25:7149. [PMID: 39000257 PMCID: PMC11241235 DOI: 10.3390/ijms25137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = -0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = -0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| | | | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| |
Collapse
|
4
|
Alabed HBR, Del Grosso A, Bellani V, Urbanelli L, Carpi S, De Sarlo M, Bertocci L, Colagiorgio L, Buratta S, Scaccini L, Frongia Mancini D, Tonazzini I, Cecchini M, Emiliani C, Pellegrino RM. Untargeted Lipidomic Approach for Studying Different Nervous System Tissues of the Murine Model of Krabbe Disease. Biomolecules 2023; 13:1562. [PMID: 37892244 PMCID: PMC10605133 DOI: 10.3390/biom13101562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ambra Del Grosso
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Valeria Bellani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sara Carpi
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Miriam De Sarlo
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Lorenzo Bertocci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Laura Colagiorgio
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Luca Scaccini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Dorotea Frongia Mancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Marco Cecchini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| |
Collapse
|
5
|
Mechanotransduction Impairment in Primary Fibroblast Model of Krabbe Disease. Biomedicines 2023; 11:biomedicines11030927. [PMID: 36979906 PMCID: PMC10046230 DOI: 10.3390/biomedicines11030927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Krabbe disease (KD) is a genetic disorder caused by the absence of the galactosylceramidase (GALC) functional enzyme. No cure is currently available. Here, we investigate the mechanotransduction process in primary fibroblasts collected from the twitcher mouse, a natural KD murine model. Thanks to mechanotransduction, cells can sense their environment and convert external mechanical stimuli into biochemical signals that result in intracellular changes. In GALC-deficient fibroblasts, we show that focal adhesions (FAs), the protein clusters necessary to adhere and migrate, are increased, and that single-cell migration and wound healing are impaired. We also investigate the involvement of the autophagic process in this framework. We show a dysregulation in the FA turnover: here, the treatment with the autophagy activator rapamycin boosts cell migration and improves the clearance of FAs in GALC-deficient fibroblasts. We propose mechanosensing impairment as a novel potential pathological mechanism in twitcher fibroblasts, and more in general in Krabbe disease.
Collapse
|
6
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
7
|
Hegeman CV, de Jong OG, Lorenowicz MJ. A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:393-421. [PMID: 39697359 PMCID: PMC11651879 DOI: 10.20517/evcna.2022.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery.
Collapse
Affiliation(s)
- Charlotte V. Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Authors contributed equally
| | - Magdalena J. Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Biomedical Primate Research Centre, Lange Kleinweg 161, Rijswijk 2288 GJ, The Netherlands
- Authors contributed equally
| |
Collapse
|
8
|
Kreher C, Favret J, Weinstock NI, Maulik M, Hong X, Gelb MH, Wrabetz L, Feltri ML, Shin D. Neuron-specific ablation of the Krabbe disease gene galactosylceramidase in mice results in neurodegeneration. PLoS Biol 2022; 20:e3001661. [PMID: 35789331 PMCID: PMC9255775 DOI: 10.1371/journal.pbio.3001661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Krabbe disease is caused by a deficiency of the lysosomal galactosylceramidase (GALC) enzyme, which results in the accumulation of galactosylceramide (GalCer) and psychosine. In Krabbe disease, the brunt of demyelination and neurodegeneration is believed to result from the dysfunction of myelinating glia. Recent studies have shown that neuronal axons are both structurally and functionally compromised in Krabbe disease, even before demyelination, suggesting a possible neuron-autonomous role of GALC. Using a novel neuron-specific Galc knockout (CKO) model, we show that neuronal Galc deletion is sufficient to cause growth and motor coordination defects and inflammatory gliosis in mice. Furthermore, psychosine accumulates significantly in the nervous system of neuron-specific Galc-CKO. Confocal and electron microscopic analyses show profound neuro-axonal degeneration with a mild effect on myelin structure. Thus, we prove for the first time that neuronal GALC is essential to maintain and protect neuronal function independently of myelin and may directly contribute to the pathogenesis of Krabbe disease.
Collapse
Affiliation(s)
- Conlan Kreher
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - Jacob Favret
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - Nadav I. Weinstock
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - Malabika Maulik
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - Xinying Hong
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Lawrence Wrabetz
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| | - Daesung Shin
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—SUNY, Buffalo, New York, United States of America
| |
Collapse
|
9
|
Papini N, Giallanza C, Brioschi L, Ranieri FR, Giussani P, Mauri L, Ciampa MG, Viani P, Tringali C. Galactocerebrosidase deficiency induces an increase in lactosylceramide content: A new hallmark of Krabbe disease? Int J Biochem Cell Biol 2022; 145:106184. [PMID: 35217188 DOI: 10.1016/j.biocel.2022.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 12/11/2022]
Abstract
Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3β) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.
Collapse
Affiliation(s)
- Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Chiara Giallanza
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Francesca Romana Ranieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
10
|
Pergande MR, Kang C, George D, Sutter PA, Crocker SJ, Cologna SM, Givogri MI. Lipidomic analysis identifies age-disease-related changes and potential new biomarkers in brain-derived extracellular vesicles from metachromatic leukodystrophy mice. Lipids Health Dis 2022; 21:32. [PMID: 35351138 PMCID: PMC8962106 DOI: 10.1186/s12944-022-01644-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent findings show that extracellular vesicle constituents can exert short- and long-range biological effects on neighboring cells in the brain, opening an exciting avenue for investigation in the field of neurodegenerative diseases. Although it is well documented that extracellular vesicles contain many lipids and are enriched in sphingomyelin, cholesterol, phosphatidylserines and phosphatidylinositols, no reports have addressed the lipidomic profile of brain derived EVs in the context of Metachromatic Leukodystrophy, a lysosomal storage disease with established metabolic alterations in sulfatides. METHODS In this study, we isolated and characterized the lipid content of brain-derived EVs using the arylsulfatase A knockout mouse as a model of the human condition. RESULTS Our results suggest that biogenesis of brain-derived EVs is a tightly regulated process in terms of size and protein concentration during postnatal life. Our lipidomic analysis demonstrated that sulfatides and their precursors (ceramides) as well as other lipids including fatty acids are altered in an age-dependent manner in EVs isolated from the brain of the knockout mouse. CONCLUSIONS In addition to the possible involvement of EVs in the pathology of Metachromatic Leukodystrophy, our study underlines that measuring lipid signatures in EVs may be useful as biomarkers of disease, with potential application to other genetic lipidoses.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Christina Kang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA
| | - Diann George
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA
| | - Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.,Laboratory for Integrative Neurosciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St. M/C 512, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Hordeaux J, Jeffrey BA, Jian J, Choudhury GR, Michalson K, Mitchell TW, Buza EL, Chichester J, Dyer C, Bagel J, Vite CH, Bradbury AM, Wilson JM. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum Gene Ther 2022; 33:499-517. [PMID: 35333110 PMCID: PMC9142772 DOI: 10.1089/hum.2021.245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brianne A Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlong Jian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristofer Michalson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas W Mitchell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Reiter CR, Rebiai R, Kwak A, Marshall J, Wozniak D, Scesa G, Nguyen D, Rue E, Pathmasiri C, Pijewski R, van Breemen R, Cologna S, Crocker SJ, Givogri MI, Bongarzone ER. The Pathogenic Sphingolipid Psychosine is Secreted in Extracellular Vesicles in the Brain of a Mouse Model of Krabbe Disease. ASN Neuro 2022; 14:17590914221087817. [PMID: 35300522 PMCID: PMC8943320 DOI: 10.1177/17590914221087817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.
Collapse
Affiliation(s)
- Cory R. Reiter
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Angelika Kwak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeff Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dylan Wozniak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Giusepe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily Rue
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Chandimal Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Pijewski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard van Breemen
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Stephanie Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - M Irene Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Nasir G, Chopra R, Elwood F, Ahmed SS. Krabbe Disease: Prospects of Finding a Cure Using AAV Gene Therapy. Front Med (Lausanne) 2021; 8:760236. [PMID: 34869463 PMCID: PMC8633897 DOI: 10.3389/fmed.2021.760236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Krabbe Disease (KD) is an autosomal metabolic disorder that affects both the central and peripheral nervous systems. It is caused by a functional deficiency of the lysosomal enzyme, galactocerebrosidase (GALC), resulting in an accumulation of the toxic metabolite, psychosine. Psychosine accumulation affects many different cellular pathways, leading to severe demyelination. Although there is currently no effective therapy for Krabbe disease, recent gene therapy-based approaches in animal models have indicated a promising outlook for clinical treatment. This review highlights recent findings in the pathogenesis of Krabbe disease, and evaluates AAV-based gene therapy as a promising strategy for treating this devastating pediatric disease.
Collapse
Affiliation(s)
- Gibran Nasir
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Rajiv Chopra
- AllianThera Biopharma, Boston, MA, United States
| | - Fiona Elwood
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| | - Seemin S Ahmed
- Department of Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA, United States
| |
Collapse
|
14
|
Insights into Lewy body disease from rare neurometabolic disorders. J Neural Transm (Vienna) 2021; 128:1567-1575. [PMID: 34056672 PMCID: PMC8528771 DOI: 10.1007/s00702-021-02355-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 01/24/2023]
Abstract
Professor Kurt Jellinger is well known for his seminal work on the neuropathology of age-associated neurodegenerative disorders, particularly Lewy body diseases. However, it is less well known that he also contributed important insights into the neuropathological features of several paediatric neurometabolic diseases, including Alpers–Huttenlocher syndrome, a syndrome of mitochondrial disease caused by POLG mutations, and infantile neuroaxonal dystrophy, a phenotype resulting from PLA2G6 mutations. Despite these rare diseases occurring in early life, they share many important pathological overlaps with age-associated Lewy body disease, particularly dysregulation of α-synuclein. In this review, we describe several neurometabolic diseases linked to Lewy body disease mechanisms, and discuss the wider context to pathological overlaps between neurometabolic and Lewy body diseases. In particular, we will focus on how understanding disease mechanisms in neurometabolic disorders with dysregulated α-synuclein may generate insights into predisposing factors for α-synuclein aggregation in idiopathic Lewy body diseases.
Collapse
|
15
|
Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett 2021; 752:135841. [PMID: 33766733 PMCID: PMC8802533 DOI: 10.1016/j.neulet.2021.135841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
Abstract
Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH, 43205, United States.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Wilson I, Vitelli C, Yu GK, Pacheco G, Vincelette J, Bunting S, Sisó S. Quantitative Assessment of Neuroinflammation, Myelinogenesis, Demyelination, and Nerve Fiber Regeneration in Immunostained Sciatic Nerves From Twitcher Mice With a Tissue Image Analysis Platform. Toxicol Pathol 2021; 49:950-962. [PMID: 33691530 DOI: 10.1177/0192623321991469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scoring demyelination and regeneration in hematoxylin and eosin-stained nerves poses a challenge even for the trained pathologist. This article demonstrates how combinatorial multiplex immunohistochemistry (IHC) and quantitative digital pathology bring new insights into the peripheral neuropathogenesis of the Twitcher mouse, a model of Krabbe disease. The goal of this investigational study was to integrate modern pathology tools to traditional anatomic pathology microscopy workflows, in order to generate quantitative data in a large number of samples, and aid the understanding of complex disease pathomechanisms. We developed a novel IHC toolkit using a combination of CD68, periaxin-1, phosphorylated neurofilaments and SOX-10 to interrogate inflammation, myelination, axonal size, and Schwann cell counts in sciatic nerves from 17-, 21-, 25-, and 35-day-old wild-type and Twitcher mice using self-customized digital image algorithms. Our quantitative analyses highlight that nerve macrophage infiltration and interstitial expansion are the earliest detectable changes in Twitcher nerves. By 17 days of age, while the diameter of axons is small, the number of myelinated axons is still normal. However, from 21 days onward Twitcher nerves contain 75% of wild-type myelinated nerve fiber numbers despite containing 3 times more Schwann cells. In 35-day-old Twitcher mice when demyelination is detectable, nerve myelination drops to 50%.
Collapse
Affiliation(s)
- Irene Wilson
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| | - Cathy Vitelli
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Guoying Karen Yu
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Glenn Pacheco
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Jon Vincelette
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Stuart Bunting
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Sílvia Sisó
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| |
Collapse
|
17
|
Rebiai R, Givogri MI, Gowrishankar S, Cologna SM, Alford ST, Bongarzone ER. Synaptic Function and Dysfunction in Lysosomal Storage Diseases. Front Cell Neurosci 2021; 15:619777. [PMID: 33746713 PMCID: PMC7978225 DOI: 10.3389/fncel.2021.619777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Stephania M. Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Simon T. Alford
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Cheng A, Kawahata I, Fukunaga K. Fatty Acid Binding Protein 5 Mediates Cell Death by Psychosine Exposure through Mitochondrial Macropores Formation in Oligodendrocytes. Biomedicines 2020; 8:biomedicines8120635. [PMID: 33419250 PMCID: PMC7766880 DOI: 10.3390/biomedicines8120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocytes, the myelinating cells in the central nervous system (CNS), are critical for producing myelin throughout the CNS. The loss of oligodendrocytes is associated with multiple neurodegenerative disorders mediated by psychosine. However, the involvement of psychosine in the critical biochemical pathogenetic mechanism of the loss of oligodendrocytes and myelin in krabbe disease (KD) remains unclear. Here, we addressed how oligodendrocytes are induced by psychosine treatment in both KG-1C human oligodendroglial cells and mouse oligodendrocyte precursor cells. We found that fatty acid binding protein 5 (FABP5) expressed in oligodendrocytes accelerates mitochondria-induced glial death by inducing mitochondrial macropore formation through voltage-dependent anion channels (VDAC-1) and BAX. These two proteins mediate mitochondrial outer membrane permeabilization, thereby leading to the release of mitochondrial DNA and cytochrome C into the cytosol, and the activation of apoptotic caspases. Furthermore, we confirmed that the inhibition of FABP5 functions by shRNA and FABP5-specific ligands blocking mitochondrial macropore formation, thereby rescuing psychosine-induced oligodendrocyte death. Taken together, we identified FABP5 as a critical factor in mitochondrial injury associated with psychosine-induced apoptosis in oligodendrocytes.
Collapse
|
19
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
20
|
Giussani P, Prinetti A, Tringali C. The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem 2020; 156:403-414. [PMID: 33448358 DOI: 10.1111/jnc.15133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) represents the most common demyelinating disease affecting the central nervous system (CNS) in adults as well as in children. Furthermore, in children, in addition to acquired diseases such as MS, genetically inherited diseases significantly contribute to the incidence of demyelinating disorders. Some genetic defects lead to sphingolipid alterations that are able to elicit neurological symptoms. Sphingolipids are essential for brain development, and their aberrant functionality may thus contribute to demyelinating diseases such as MS. In particular, sphingolipidoses caused by deficits of sphingolipid-metabolizing enzymes, are often associated with demyelination. Sphingolipids are not only structural molecules but also bioactive molecules involved in the regulation of cellular events such as development of the nervous system, myelination and maintenance of myelin stability. Changes in the sphingolipid metabolism deeply affect plasma membrane organization. Thus, changes in myelin sphingolipid composition might crucially contribute to the phenotype of diseases characterized by demyelinalization. Here, we review key features of several sphingolipids such as ceramide/dihydroceramide, sphingosine/dihydrosphingosine, glucosylceramide and, galactosylceramide which act in myelin formation during rat brain development and in human brain demyelination during the pathogenesis of MS, suggesting that this knowledge could be useful in identifying targets for possible therapies.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| |
Collapse
|
21
|
Guenzel AJ, Turgeon CT, Nickander KK, White AL, Peck DS, Pino GB, Studinski AL, Prasad VK, Kurtzberg J, Escolar ML, Lasio MLD, Pellegrino JE, Sakonju A, Hickey RE, Shallow NM, Ream MA, Orsini JJ, Gelb MH, Raymond K, Gavrilov DK, Oglesbee D, Rinaldo P, Tortorelli S, Matern D. The critical role of psychosine in screening, diagnosis, and monitoring of Krabbe disease. Genet Med 2020; 22:1108-1118. [PMID: 32089546 DOI: 10.1038/s41436-020-0764-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/05/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Newborn screening (NBS) for Krabbe disease (KD) is performed by measurement of galactocerebrosidase (GALC) activity as the primary test. This revealed that GALC activity has poor specificity for KD. Psychosine (PSY) was proposed as a disease marker useful to reduce the false positive rate for NBS and for disease monitoring. We report a highly sensitive PSY assay that allows identification of KD patients with minimal PSY elevations. METHODS PSY was extracted from dried blood spots or erythrocytes with methanol containing d5-PSY as internal standard, and measured by liquid chromatography-tandem mass spectrometry. RESULTS Analysis of PSY in samples from controls (N = 209), GALC pseudodeficiency carriers (N = 55), GALC pathogenic variant carriers (N = 27), patients with infantile KD (N = 26), and patients with late-onset KD (N = 11) allowed for the development of an effective laboratory screening and diagnostic algorithm. Additional longitudinal measurements were used to track therapeutic efficacy of hematopoietic stem cell transplantion (HSCT). CONCLUSION This study supports PSY quantitation as a critical component of NBS for KD. It helps to differentiate infantile from later onset KD variants, as well as from GALC variant and pseudodeficiency carriers. Additionally, this study provides further data that PSY measurement can be useful to monitor KD progression before and after treatment.
Collapse
Affiliation(s)
- Adam J Guenzel
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Coleman T Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kim K Nickander
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy L White
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dawn S Peck
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gisele B Pino
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - April L Studinski
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vinod K Prasad
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Joan E Pellegrino
- Department of Pediatrics, Upstate Medical University, Syracuse, NY, USA
| | - Ai Sakonju
- Department of Pediatrics, Upstate Medical University, Syracuse, NY, USA
| | - Rachel E Hickey
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | - Joseph J Orsini
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dimitar K Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
The Role of Vesicle Trafficking and Release in Oligodendrocyte Biology. Neurochem Res 2019; 45:620-629. [PMID: 31782103 DOI: 10.1007/s11064-019-02913-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes are a subtype of glial cells found within the central nervous system (CNS), responsible for the formation and maintenance of specialized myelin membranes which wrap neuronal axons. The development of myelin requires tight coordination for the cell to deliver lipid and protein building blocks to specific myelin segments at the right time. Both internal and external cues control myelination, thus the reception of these signals also requires precise regulation. In late years, a growing body of evidence indicates that oligodendrocytes, like many other cell types, may use extracellular vesicles (EVs) as a medium for transferring information. The field of EV research has expanded rapidly over the past decade, with new contributions that suggest EVs might have direct involvement in communications with neurons and other glial cells to fine tune oligodendroglial function. This functional role of EVs might also be maladaptive, as it has likewise been implicated in the spreading of toxic molecules within the brain during disease. In this review we will discuss the field's current understanding of extracellular vesicle biology within oligodendrocytes, and their contribution to physiologic and pathologic conditions.
Collapse
|
23
|
Vidal M. Exosomes: Revisiting their role as "garbage bags". Traffic 2019; 20:815-828. [PMID: 31418976 DOI: 10.1111/tra.12687] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
In recent years, the term "extracellular vesicle" (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane-derived vesicles (ectosomes/microvesicles) and endosome-derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio-pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off-site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote "differentiation" or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.
Collapse
Affiliation(s)
- Michel Vidal
- LPHI - Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
24
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
25
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
26
|
Pellegrini D, Del Grosso A, Angella L, Giordano N, Dilillo M, Tonazzini I, Caleo M, Cecchini M, McDonnell LA. Quantitative Microproteomics Based Characterization of the Central and Peripheral Nervous System of a Mouse Model of Krabbe Disease. Mol Cell Proteomics 2019; 18:1227-1241. [PMID: 30926673 PMCID: PMC6553931 DOI: 10.1074/mcp.ra118.001267] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Indexed: 11/06/2022] Open
Abstract
Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the accumulation of psychosine in the nervous system and widespread degeneration of oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing. Here we report the first in-depth characterization of the proteome of the Twitcher mouse, a spontaneous mouse model of Krabbe disease, to investigate the proteome changes in the Central and Peripheral Nervous System. We applied a TMT-based workflow to compare the proteomes of the corpus callosum, motor cortex and sciatic nerves of littermate homozygous Twitcher and wild-type mice. More than 400 protein groups exhibited differences in expression and included proteins involved in pathways that can be linked to Krabbe disease, such as inflammatory and defense response, lysosomal proteins accumulation, demyelination, reduced nervous system development and cell adhesion. These findings provide new insights on the molecular mechanisms of Krabbe disease, representing a starting point for future functional experiments to study the molecular pathogenesis of Krabbe disease. Data are available via ProteomeXchange with identifier PXD010594.
Collapse
Affiliation(s)
- Davide Pellegrini
- From ‡NEST, Scuola Normale Superiore, Pisa 56127, Italy
- §Fondazione Pisana per la Scienza ONLUS, 56107 San Giuliano Terme, Pisa, Italy
| | - Ambra Del Grosso
- From ‡NEST, Scuola Normale Superiore, Pisa 56127, Italy
- ¶NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | | | | | - Marialaura Dilillo
- §Fondazione Pisana per la Scienza ONLUS, 56107 San Giuliano Terme, Pisa, Italy
| | | | | | - Marco Cecchini
- From ‡NEST, Scuola Normale Superiore, Pisa 56127, Italy
- ¶NEST, Istituto Nanoscienze-CNR, Pisa, Italy
| | - Liam A McDonnell
- §Fondazione Pisana per la Scienza ONLUS, 56107 San Giuliano Terme, Pisa, Italy;
- **Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Sural-Fehr T, Singh H, Cantuti-Catelvetri L, Zhu H, Marshall MS, Rebiai R, Jastrzebski MJ, Givogri MI, Rasenick MM, Bongarzone ER. Inhibition of the IGF-1-PI3K-Akt-mTORC2 pathway in lipid rafts increases neuronal vulnerability in a genetic lysosomal glycosphingolipidosis. Dis Model Mech 2019; 12:dmm036590. [PMID: 31036560 PMCID: PMC6550048 DOI: 10.1242/dmm.036590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Hongling Zhu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael S Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Martin J Jastrzebski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Abbandonato G, Storti B, Tonazzini I, Stöckl M, Subramaniam V, Montis C, Nifosì R, Cecchini M, Signore G, Bizzarri R. Lipid-Conjugated Rigidochromic Probe Discloses Membrane Alteration in Model Cells of Krabbe Disease. Biophys J 2018; 116:477-486. [PMID: 30709620 DOI: 10.1016/j.bpj.2018.11.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Martin Stöckl
- Bioimaging Center, Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Vinod Subramaniam
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
29
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
30
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|