1
|
Semeraro M, Boubaker G, Scaccaglia M, Müller J, Vigneswaran A, Hänggeli KPA, Amdouni Y, Kramer LH, Vismarra A, Genchi M, Pelosi G, Bisceglie F, Heller M, Uldry AC, Braga-Lagache S, Hemphill A. Transient Adaptation of Toxoplasma gondii to Exposure by Thiosemicarbazone Drugs That Target Ribosomal Proteins Is Associated with the Upregulated Expression of Tachyzoite Transmembrane Proteins and Transporters. Int J Mol Sci 2024; 25:9067. [PMID: 39201756 PMCID: PMC11354806 DOI: 10.3390/ijms25169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.
Collapse
Affiliation(s)
- Manuela Semeraro
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Laura Helen Kramer
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Alice Vismarra
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Marco Genchi
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| |
Collapse
|
2
|
Alberione MP, González-Ruiz V, von Rohr O, Rudaz S, Soldati-Favre D, Izquierdo L, Kloehn J. N-acetylglucosamine supplementation fails to bypass the critical acetylation of glucosamine-6-phosphate required for Toxoplasma gondii replication and invasion. PLoS Pathog 2024; 20:e1011979. [PMID: 38900808 PMCID: PMC11218972 DOI: 10.1371/journal.ppat.1011979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.
Collapse
Affiliation(s)
- María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
| | | | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gomes Ferrari Strang AG, Ferrar RG, Falavigna-Guilherme AL. Gestational toxoplasmosis treatment changes the child's prognosis: A cohort study in southern Brazil. PLoS Negl Trop Dis 2023; 17:e0011544. [PMID: 37773943 PMCID: PMC10593203 DOI: 10.1371/journal.pntd.0011544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/23/2023] [Accepted: 07/21/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND We evaluate the drug treatment for pregnant women with acute toxoplasmosis to reduce the risk of congenital infection, side effects (prenatal and postnatal treatment in children) and the hazard of discontinuing the infant's medication. METHODS We conducted a prospective cohort study to assess the risks of congenital toxoplasmosis among children born to acutely infected women with and without treatment. We examined the relationship between "exposed" and "infected children", "number of infant neutrophils", "prenatal" and "postnatal treatment". Factor analysis of mixed data (FAMD) was used to analyze the data. All children started treatment at the hospital. FINDINGS Between 2017 and 2021, 233 pregnant women were evaluated at the University Hospital of Maringá; ninety-four met criteria for acute gestational toxoplasmosis. We followed up 61 children; eleven (18%) had the infection confirmed and 50 (82%) were free of toxoplasmosis (exposed). Children born to untreated mothers have 6.5-times higher risk of being infected; the transmission rate among untreated mothers was 50% versus 8.3% among treated ones. Three decreasing values of immunoglobulin G were a security parameter for stopping the child's medication in the exposed group (50/61). Neutropenia was the leading side effect among children and the infected had a 2.7 times higher risk. There was no correlation between maternal use of pyrimethamine and children's neutropenia. INTERPRETATION The follow-up of women with acute T. gondii infection and their children, through a multidisciplinary team, availability of anti-T. gondii serology and pre- and post-natal treatments reduced the risk of toxoplasmosis transmission.
Collapse
Affiliation(s)
- Ana Gabriela Gomes Ferrari Strang
- Department of Medicine, Health Sciences Center, University Hospital of Maringá (HUM), State University of Maringá, Paraná (UEM), Brazil
- Postgraduate Program in Health Science, Health Sciences Center, State University of Maringá (UEM), Paraná, Brazil
| | - Rafaela Gomes Ferrar
- Postgraduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Sanchez SG, Bassot E, Cerutti A, Mai Nguyen H, Aïda A, Blanchard N, Besteiro S. The apicoplast is important for the viability and persistence of Toxoplasma gondii bradyzoites. Proc Natl Acad Sci U S A 2023; 120:e2309043120. [PMID: 37590416 PMCID: PMC10450435 DOI: 10.1073/pnas.2309043120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.
Collapse
Affiliation(s)
- Syrian G. Sanchez
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Aude Cerutti
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Hoa Mai Nguyen
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Sébastien Besteiro
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| |
Collapse
|
6
|
Adeyemi OS, Ishii K, Kato K. The In Vitro Anti-Parasitic Activities of Emodin toward Toxoplasma gondii. Pharmaceuticals (Basel) 2023; 16:ph16030447. [PMID: 36986545 PMCID: PMC10053859 DOI: 10.3390/ph16030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, toxoplasmosis affects nearly one-third of the world’s population, but the available treatments have several limitations. This factor underscores the search for better therapy for toxoplasmosis. Therefore, in the current investigation, we investigated the potential of emodin as a new anti-Toxoplasma gondii while exploring its anti-parasitic mechanism of action. We explored the mechanisms of action of emodin in the presence and absence of an in vitro model of experimental toxoplasmosis. Emodin showed strong anti-T. gondii action with an EC50 value of 0.03 µg/mL; at this same effective anti-parasite concentration, emodin showed no appreciable host cytotoxicity. Likewise, emodin showed a promising anti-T. gondii specificity with a selectivity index (SI) of 276. Pyrimethamine, a standard drug for toxoplasmosis, had an SI of 2.3. The results collectively imply that parasite damage was selective rather than as a result of a broad cytotoxic effect. Furthermore, our data confirm that emodin-induced parasite growth suppression stems from parasite targets and not host targets, and indicate that the anti-parasite action of emodin precludes oxidative stress and ROS production. Emodin likely mediates parasite growth suppression through means other than oxidative stress, ROS production, or mitochondrial toxicity. Collectively, our findings support the potential of emodin as a promising and novel anti-parasitic agent that warrants further investigation.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki 989-6711, Miyagi, Japan
- Medicinal Biochemistry and Toxicology Laboratory, Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Kosei Ishii
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki 989-6711, Miyagi, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki 989-6711, Miyagi, Japan
- Correspondence: ; Tel./Fax: +81-229-84-7391
| |
Collapse
|
7
|
Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis. Acta Trop 2023; 239:106810. [PMID: 36581225 DOI: 10.1016/j.actatropica.2022.106810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.
Collapse
|
8
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
9
|
Smith D, Lunghi M, Olafsson EB, Hatton O, Di Cristina M, Carruthers VB. A High-Throughput Amenable Dual Luciferase System for Measuring Toxoplasma gondii Bradyzoite Viability after Drug Treatment. Anal Chem 2023; 95:668-676. [PMID: 36548400 PMCID: PMC9850410 DOI: 10.1021/acs.analchem.2c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
It is estimated that more than 2 billion people are chronically infected with the intracellular protozoan parasite Toxoplasma gondii (T. gondii). Despite this, there is currently no vaccine to prevent infection in humans, and there is no recognized curative treatment to clear tissue cysts. A major hurdle for identifying effective drug candidates against chronic-stage cysts has been the low throughput of existing in vitro assays for testing the survival of bradyzoites. We have developed a luciferase-based platform for specifically determining bradyzoite survival within in vitro cysts in a 96-well plate format. We engineered a cystogenic type II T. gondii PruΔku80Δhxgpr strain for stage-specific expression of firefly luciferase in the cytosol of bradyzoites and nanoluciferase for secretion into the lumen of the cyst (DuaLuc strain). Using this DuaLuc strain, we found that the ratio of firefly luciferase to nanoluciferase decreased upon treatment with atovaquone or LHVS, two compounds that are known to compromise bradyzoite viability. The 96-well format allowed us to test several additional compounds and generate dose-response curves for calculation of EC50 values indicating relative effectiveness of a compound. Accordingly, this DuaLuc system should be suitable for screening libraries of diverse compounds and defining the potency of hits or other compounds with a putative antibradyzoite activity.
Collapse
Affiliation(s)
- David Smith
- University of Michigan Medical School, Ann Arbor 734 763 2081, United States
- Moredun Research Institute, Penicuik EH26 0PZ, U.K.
| | - Matteo Lunghi
- Università degli Studi di Perugia, Perugia 06123, Italy
| | - Einar B. Olafsson
- University of Michigan Medical School, Ann Arbor 734 763 2081, United States
- University of Uppsala, Uppsala 751 05, Sweden
| | - Olivia Hatton
- University of Michigan Medical School, Ann Arbor 734 763 2081, United States
| | | | - Vern B. Carruthers
- University of Michigan Medical School, Ann Arbor 734 763 2081, United States
| |
Collapse
|
10
|
Calero-Bernal R, Fernández-Escobar M, Katzer F, Su C, Ortega-Mora LM. Unifying Virulence Evaluation in Toxoplasma gondii: A Timely Task. Front Cell Infect Microbiol 2022; 12:868727. [PMID: 35573788 PMCID: PMC9097680 DOI: 10.3389/fcimb.2022.868727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii, a major zoonotic pathogen, possess a significant genetic and phenotypic diversity that have been proposed to be responsible for the variation in clinical outcomes, mainly related to reproductive failure and ocular and neurological signs. Different T. gondii haplogroups showed strong phenotypic differences in laboratory mouse infections, which provide a suitable model for mimicking acute and chronic infections. In addition, it has been observed that degrees of virulence might be related to the physiological status of the host and its genetic background. Currently, mortality rate (lethality) in outbred laboratory mice is the most significant phenotypic marker, which has been well defined for the three archetypal clonal types (I, II and III) of T. gondii; nevertheless, such a trait seems to be insufficient to discriminate between different degrees of virulence of field isolates. Many other non-lethal parameters, observed both in in vivo and in vitro experimental models, have been suggested as highly informative, yielding promising discriminatory power. Although intra-genotype variations have been observed in phenotypic characteristics, there is no clear picture of the phenotypes circulating worldwide; therefore, a global overview of T. gondii strain mortality in mice is presented here. Molecular characterization has been normalized to some extent, but this is not the case for the phenotypic characterization and definition of virulence. The present paper proposes a baseline (minimum required information) for the phenotypic characterization of T. gondii virulence and intends to highlight the needs for consistent methods when a panel of T. gondii isolates is evaluated for virulence.
Collapse
Affiliation(s)
- Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| | - Mercedes Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Frank Katzer
- Disease Control Department, Moredun Research Institute, Edinburgh, United Kingdom
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Rafael Calero-Bernal, ; Luis Miguel Ortega-Mora,
| |
Collapse
|
11
|
Christiansen C, Maus D, Hoppenz E, Murillo-León M, Hoffmann T, Scholz J, Melerowicz F, Steinfeldt T, Seeber F, Blume M. In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun 2022; 13:1168. [PMID: 35246532 PMCID: PMC8897399 DOI: 10.1038/s41467-022-28730-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention. Bradyzoites are a quiescent form of Toxoplasma gondii enclosed in cysts during chronic infections. Here, Christiansen et al. develop a human myotube-based in vitro culture model of cysts that are infectious to mice and characterize their metabolism in comparison to fast replicating tachyzoites.
Collapse
Affiliation(s)
- Céline Christiansen
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Deborah Maus
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Ellen Hoppenz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Hoffmann
- ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jana Scholz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Florian Melerowicz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany
| | - Martin Blume
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
12
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
13
|
Systematic Analysis of Clemastine, a Candidate Apicomplexan Parasite-Selective Tubulin-Targeting Agent. Int J Mol Sci 2021; 23:ijms23010068. [PMID: 35008492 PMCID: PMC8744746 DOI: 10.3390/ijms23010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, Plasmodium spp., Babesia spp., and Cryptosporidium spp., cause significant morbidity and mortality. Existing treatments are problematic due to toxicity and the emergence of drug-resistant parasites. Because protozoan tubulin can be selectively disrupted by small molecules to inhibit parasite growth, we assembled an in vitro testing cascade to fully delineate effects of candidate tubulin-targeting drugs on Toxoplasma gondii and vertebrate host cells. Using this analysis, we evaluated clemastine, an antihistamine that has been previously shown to inhibit Plasmodium growth by competitively binding to the CCT/TRiC tubulin chaperone as a proof-of-concept. We concurrently analyzed astemizole, a distinct antihistamine that blocks heme detoxification in Plasmodium. Both drugs have EC50 values of ~2 µM and do not demonstrate cytotoxicity or vertebrate microtubule disruption at this concentration. Parasite subpellicular microtubules are shortened by treatment with either clemastine or astemizole but not after treatment with pyrimethamine, indicating that this effect is not a general response to antiparasitic drugs. Immunoblot quantification indicates that the total α-tubulin concentration of 0.02 pg/tachyzoite does not change with clemastine treatment. In conclusion, the testing cascade allows profiling of small-molecule effects on both parasite and vertebrate cell viability and microtubule integrity.
Collapse
|
14
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
15
|
Drug repositioning: antiprotozoal activity of terfenadine against Entamoeba histolytica trophozoites. Parasitol Res 2021; 121:303-309. [PMID: 34741218 DOI: 10.1007/s00436-021-07354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/16/2021] [Indexed: 10/19/2022]
Abstract
The infection caused by Entamoeba histolytica is still a serious public health problem, especially in developing countries. The goal of this study was to evaluate the effect of terfenadine against Entamoeba histolytica. The trophozoites were exposed to 1, 2, 3, and 4 μM of terfenadine, for 24 and 48 h. Consequently, the viability of cells was determined by trypan blue exclusion test. The effect of terfenadine on adhesion of Entamoeba histolytica was evaluated in Caco-2 cells. In addition, the effect of terfenadine on the erythrophagocytic capacity of the parasite was investigated. The results show that terfenadine affects the growth and cell viability in a time- and dose-dependent manner. The higher inhibitory effects were observed with 4 µM at 48 h; 91.6% of growth inhibition and only 22.5% of trophozoites were viable. Additionally, we demonstrate that terfenadine is highly selective for the parasite and has low toxicity on Caco-2 cells. Furthermore, adhesion to Caco-2 cells and erythrophagocytic capacity were significantly inhibited. These findings demonstrate that terfenadine exerts significant effects on the virulence of Entamoeba histolytica. This is the first study demonstrating the amoebicidal activity of terfenadine and the results suggest it may be effective in the treatment of amoebiasis.
Collapse
|
16
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Guo H, Gao Y, N'Da DD, Xuan X. In vitro anti-Toxoplasma gondii efficacy of synthesised benzyltriazole derivatives. ACTA ACUST UNITED AC 2021; 88:e1-e8. [PMID: 34212734 PMCID: PMC8252180 DOI: 10.4102/ojvr.v88i1.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, an obligate intracellular parasite, is the aetiological agent of toxoplasmosis, a disease that affects approximately 25% – 30% of the world’s population. At present, no safe and effective vaccine exists for the prevention of toxoplasmosis. Current treatment options for toxoplasmosis are active only against tachyzoites and may also cause bone marrow toxicity. To contribute to the global search for novel agents for the treatment of toxoplasmosis, we herein report the in vitro activities of previously synthesised benzyltriazole derivatives. The effects of these compounds against T. gondii in vitro were evaluated by using a expressing green fluorescent protein (GFP) type I strain parasite (RH-GFP) and a type II cyst-forming strain of parasite (PruΔku80Δhxgprt). The frontline antitubercular drug isoniazid, designated as Frans J. Smit -isoniazid (FJS-INH), was also included in the screening as a preliminary test in view of future repurposing of this agent. Of the compounds screened, FJS-302, FJS-303, FJS-403 and FJS-INH demonstrated > 80% parasite growth inhibition with IC50 values of 5.6 µg/mL, 6.8 µg/µL, 7.0 µg/mL and 19.8 µg/mL, respectively. FJS-302, FJS-303 and FJS-403 inhibited parasite invasion and replication, whereas, sulphadiazine (SFZ), the positive control, was only effective against parasite replication. In addition, SFZ induced bradyzoite differentiation in vitro, whilst FJS-302, FJS-303 and FJS-403 did not increase the bradyzoite number. These results indicate that FJS-302, FJS-303 and FJS-403 have the potential to act as a viable source of antiparasitic therapeutic agents.
Collapse
Affiliation(s)
- Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro.
| | | | | | | |
Collapse
|
18
|
The role of upstream open reading frames in translation regulation in the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Parasitology 2021; 148:1277-1287. [PMID: 34099078 PMCID: PMC8383288 DOI: 10.1017/s0031182021000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.
Collapse
|
19
|
Szewczyk-Golec K, Pawłowska M, Wesołowski R, Wróblewski M, Mila-Kierzenkowska C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. Int J Mol Sci 2021; 22:ijms22115705. [PMID: 34071892 PMCID: PMC8198901 DOI: 10.3390/ijms22115705] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.
Collapse
|
20
|
Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin Microbiol Rev 2021; 34:e00115-19. [PMID: 33239310 PMCID: PMC7690944 DOI: 10.1128/cmr.00115-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
| |
Collapse
|
21
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
22
|
Abstract
Toxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process. Toxoplasma gondii is a protozoan parasite that causes lifelong chronic infection that can reactivate in immunocompromised individuals. Upon infection, the replicative stage (tachyzoite) converts into a latent tissue cyst stage (bradyzoite). Like other apicomplexans, T. gondii possesses an extensive lineage of proteins called ApiAP2s that contain DNA-binding domains first characterized in plants. The function of most ApiAP2s is unknown. We previously found that AP2IX-4 is a cell cycle-regulated ApiAP2 expressed only in dividing parasites as a putative transcriptional repressor. In this study, we purified proteins interacting with AP2IX-4, finding it to be a component of the recently characterized microrchidia (MORC) transcriptional repressor complex. We further analyzed AP2XII-2, another cell cycle-regulated factor that associates with AP2IX-4. We monitored parallel expression of AP2IX-4 and AP2XII-2 proteins in tachyzoites, detecting peak expression during S/M phase. Unlike AP2IX-4, which is dispensable in tachyzoites, loss of AP2XII-2 resulted in a slowed tachyzoite growth due to a delay in S-phase progression. We also found that AP2XII-2 depletion increased the frequency of bradyzoite differentiation in vitro. These results suggest that multiple AP2 factors collaborate to ensure proper cell cycle progression and tissue cyst formation in T. gondii. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process.
Collapse
|
23
|
Firdaus ER, Park JH, Lee SK, Park Y, Cha GH, Han ET. 3D morphological and biophysical changes in a single tachyzoite and its infected cells using three-dimensional quantitative phase imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000055. [PMID: 32441392 DOI: 10.1002/jbio.202000055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Toxoplasma gondii is an apicomplexan parasite that causes toxoplasmosis in the human body and commonly infects warm-blooded organisms. Pathophysiology of its diseases is still an interesting issue to be studied since T gondii can infect nearly all nucleated cells. Imaging techniques are crucial for studying its pathophysiology. In T gondii-infected cells structural and biochemical alterations occurred. To study that modification, we use digital holotomography to investigate the structure and biochemical alteration of single tachyzoite and its infected cells in a label-free and quantitative manner. Quantification analysis was done by measuring the refractive index distribution, which provides information about the concentration and dry mass of individual cells. This study showed that holotomography could be effectively used to identify the structural and biochemical alteration in tremendously different cells in supporting pathophysiological research in particular for T gondii-caused diseases.
Collapse
Affiliation(s)
- Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
24
|
Zahedi M, Asgari Q, Badakhshan F, Sakhteman A, Ranjbar S, Khoshneviszadeh M. Anti- Toxoplasma gondii activity of 5-oxo-hexahydroquinoline derivatives: synthesis, in vitro and in vivo evaluations, and molecular docking analysis. Res Pharm Sci 2020; 15:367-380. [PMID: 33312215 PMCID: PMC7714012 DOI: 10.4103/1735-5362.293515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate the in vitro and in vivo anti-Toxoplasma gondii (T. gondii) effect of 5-oxo-hexahydroquinoline compounds. Moreover, molecular docking study of the compounds into the active site of enoyl-acyl carrier protein reductase (ENR) as a necessary enzyme for the vitality of apicoplast was carried out. EXPERIMENTAL APPROACH A number of 5-oxo-hexahydoquinoline derivatives (Z1-Z4) were synthesized. The T. gondii tachyzoites of RH strain were treated by different concentrations (1-64 μg/mL) of the compounds. The viability of the encountered parasites with compounds was assessed using flow cytometry and propidium iodide (PI) staining. Due to the high mortality effect of Z3 and Z4 in vitro, their chemotherapy effect was assessed by inoculation of tachyzoites to four BALB/c mice groups (n = 5), followed by the gavage of various concentrations of the compounds to the mice. Molecular docking was done to study the binding affinity of the synthesized 5-oxo-hexahydroquinolines into ENR enzyme active site byusing AutoDock Vina® software. Docking was performed by a Lamarckian Genetic Algorithm with 100 runs. FINDINGS / RESULTS Flow cytometry assay results indicated compounds Z3 and Z4 had relevant mortality effect on parasite tachyzoites. Besides, in vivo experiments were also performed and a partial increase of mice longevity between control and experiment groups was recorded. Molecular docking of Z3 and Z4 in the binding site of ENR enzyme indicated that the compounds were well accommodated within the binding site. Therefore, it could be suggested that these compounds may exert their anti-T. gondii activity through the inhibition of the ENR enzyme. CONCLUSION AND IMPLICATIONS Compounds Z3 and Z4 are good leads in order to develop better anti-T. gondii agents as they demonstrated both in vitro and in vivo inhibitory effects on tachyzoites viability and infection. Further studies on altering the route of administration along with additional pharmacokinetics evaluations are needed to improve the anti-T. gondii impacts of 5-oxo-hexahydroquinoline compounds.
Collapse
Affiliation(s)
- Mohammadsaeid Zahedi
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Fatemeh Badakhshan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| |
Collapse
|
25
|
Angel SO, Vanagas L, Ruiz DM, Cristaldi C, Saldarriaga Cartagena AM, Sullivan WJ. Emerging Therapeutic Targets Against Toxoplasma gondii: Update on DNA Repair Response Inhibitors and Genotoxic Drugs. Front Cell Infect Microbiol 2020; 10:289. [PMID: 32656097 PMCID: PMC7325978 DOI: 10.3389/fcimb.2020.00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Diego M Ruiz
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Ana M Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - William J Sullivan
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
26
|
Liu S, Wu M, Hua Q, Lu D, Tian Y, Yu H, Cheng L, Chen Y, Cao J, Hu X, Tan F. Two old drugs, NVP-AEW541 and GSK-J4, repurposed against the Toxoplasma gondii RH strain. Parasit Vectors 2020; 13:242. [PMID: 32393321 PMCID: PMC7216583 DOI: 10.1186/s13071-020-04094-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Toxoplasma gondii is a zoonotic pathogen that causes toxoplasmosis and leads to serious public health problems in developing countries. However, current clinical therapeutic drugs have some disadvantages, such as serious side effects, a long course of treatment and the emergence of drug-resistant strains. The urgent need to identify novel anti-Toxoplasma drugs has initiated the effective strategy of repurposing well-characterized drugs. As a principled screening for the identification of effective compounds against Toxoplasma gondii, in the current study, a collection of 666 compounds were screened for their ability to significantly inhibit Toxoplasma growth. Methods The inhibition of parasite growth was determined using a luminescence-based β-galactosidase activity assay. Meanwhile, the effect of compounds on the viability of host cells was measured using CCK8. To assess the inhibition of the selected compounds on discrete steps of the T. gondii lytic cycle, the invasion, intracellular proliferation and egress abilities were evaluated. Finally, a murine infection model of toxoplasmosis was used to monitor the protective efficacy of drugs against acute infection of a highly virulent RH strain. Results A total of 68 compounds demonstrated more than 70% parasite growth inhibition. After excluding compounds that impaired host cell viability, we further characterized two compounds, NVP-AEW541 and GSK-J4 HCl, which had IC50 values for parasite growth of 1.17 μM and 2.37 μM, respectively. In addition, both compounds showed low toxicity to the host cell. Furthermore, we demonstrated that NVP-AEW541 inhibits tachyzoite invasion, while GSK-J4 HCl inhibits intracellular tachyzoite proliferation by halting cell cycle progression from G1 to S phase. These findings prompted us to analyse the efficacy of the two compounds in vivo by using established mouse models of acute toxoplasmosis. In addition to prolonging the survival time of mice acutely infected with T. gondii, both compounds had a remarkable ability to reduce the parasite burden of tissues. Conclusions Our findings suggest that both NVP-AEW541 and GSK-J4 could be potentially repurposed as candidate drugs against T. gondii infection.![]()
Collapse
Affiliation(s)
- Shuxian Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mimi Wu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qianqian Hua
- Clinical Laboratory, Dongyang People's Hospital, Jinhua, 322100, Zhejiang, People's Republic of China
| | - Daiqiang Lu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuan Tian
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Helin Yu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Linyan Cheng
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yinqi Chen
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaxin Cao
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Hu
- School of Medical Laboratory Science and School of Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
27
|
Screening of compound libraries for inhibitors of Toxoplasma growth and invasion. Parasitol Res 2020; 119:1675-1681. [PMID: 32236711 PMCID: PMC7223663 DOI: 10.1007/s00436-020-06673-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/20/2020] [Indexed: 10/31/2022]
Abstract
Toxoplasma gondii can infect virtually all warm-blooded animals, including humans. It can differentiate between rapidly replicating tachyzoites that cause acute infection and slowly growing bradyzoites in tissue cysts. Treatment options for toxoplasmosis are challenging because current therapies cannot eradicate the latent T. gondii infection that is mainly caused by the bradyzoite forms. Accordingly, recurrence of infection is a problem for immunocompromised patients and congenitally infected patients. Protein kinases have been widely studied in eukaryotic cells, and while little is known about signaling in Toxoplasma infection, it is likely that protein kinases play a key role in parasite proliferation, differentiation, and probably invasion. To identify optimized new kinase inhibitors for drug development against T. gondii, we screened a library of kinase inhibitor compounds for anti-Toxoplasma activity and host cell cytotoxicity. Pyrimethamine served as a positive control and 0.5% DMSO was used as a negative control. Among the 80 compounds screened, 6 compounds demonstrated ≥ 80% parasite growth inhibition at concentrations at which 5 compounds did not suppress host cell viability, while 3 kinase inhibitors (Bay 11-7082, Tyrphostin AG 1295 and PD-98059) had suppressive effects individually on parasite growth and host cell invasion, but did not strongly induce bradyzoite formation.
Collapse
|
28
|
In silico studies of novel scaffold of thiazolidin-4-one derivatives as anti-Toxoplasma gondii agents by 2D/3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2020. [DOI: 10.1007/s11224-019-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Rosuvastatin reduced brain parasite burden in a chronic toxoplasmosis in vivo model and influenced the neuropathological pattern of ME-49 strain. Parasitology 2019; 147:303-309. [PMID: 31727196 DOI: 10.1017/s0031182019001604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study evaluated the effects of rosuvastatin in vivo on toxoplasmosis chronic infection. Thirty-five Swiss mice were orally infected (ME-49 strain). After 50 days, the mice were separated into five groups: GI - non-infected, GII - infected, GIII - infected and treated with pyrimethamine and sulfadiazine (12.5 + 50 mg kg-1 body weight day-1), GIV and GV - infected and treated with rosuvastatin 10 and 40 mg kg-1 body weight day-1, respectively. After 21 days, we collected blood, liver, lungs, femoral biceps and brain were removed for Toxoplasma gondii DNA quantification by qPCR and histopathological analysis. GIV and GV did not present premature death or clinical changes, and the hepatic enzyme levels were lower compared to GI. Toxoplasma gondii DNA was detected mainly in brain and muscle, but the parasite load was significantly lower in GV compared to GII brains (P < 0.05). Histopathological changes were observed in brains, with T. gondii cysts as well as an inflammatory condition, including necrosis areas in GII and GIII. These data confirm active infection with tissue injury. This inflammatory condition was attenuated in the groups treated with rosuvastatin, especially R40 (GV). Our findings demonstrated the in vivo action of rosuvastatin in reducing cerebral parasitic load and indicate that this drug may interfere in chronic toxoplasmosis.
Collapse
|
30
|
Hypericum erectum alcoholic extract inhibits Toxoplasma growth and Entamoeba encystation: an exploratory study on the anti-protozoan potential. J Nat Med 2019; 74:294-305. [DOI: 10.1007/s11418-019-01369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
|
31
|
Adeyemi OS, Atolani O, Awakan OJ, Olaolu TD, Nwonuma CO, Alejolowo O, Otohinoyi DA, Rotimi D, Owolabi A, Batiha GES. In Vitro Screening to Identify Anti- Toxoplasma Compounds and In Silico Modeling for Bioactivities and Toxicity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:369-383. [PMID: 31543702 PMCID: PMC6747942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Toxoplasmosis, which affects more than a billion people worldwide, is a common parasitic infection caused by the obligate intracellular parasite, Toxoplasmagondii. Current treatment strategies have several limitations, including unwanted side effects and poor efficacy. Therefore, newer therapies are needed for toxoplasmosis. Drug repurposing and screening of a vast array of natural and/or synthetic compounds is a viable option for antiparasitic drug discovery. In this study, we screened 62 compounds comprising natural products (NPs) and FDA-approved (FDA) drugs, to identify the hit compounds that suppress the growth of T. gondii. To determine the parasite inhibitory potential of the compounds, host mammalian cells were infected with a transgenic T. gondii strain, and the viability of the parasite was evaluated by luminescence. Of the 62 compounds, tubericidin, sulfuretin, peruvoside, resveratrol, narasin and diacetoxyscirpenol of the natural product isolates, as well as bortezonib, 10-Hydroxycamtothecin, mebendazole, niflumic acid, clindamycin HCl, mecamylamine, chloroquine, mitomycin C, fenbendazole, daunorubicin, atropine, and cerivastatin of FDA molecules were identified as "hits" with ≥ 40 percent anti-parasite action. Additionally, mitomycin C, radicicol, naringenin, gitoxigenin, menadione, botulin, genistin, homobutein, and gelsemin HCl of the natural product isolates, as well as lomofungin, cyclocytidine, prazosin HCl, cerivastatin, camptothecin, flufenamic acid, atropine, daunorubicin, and fenbendazole of the FDA compounds exhibited cytotoxic activity, reducing the host viability by ≥ 30 percent. Our findings not only support the prospects of drug repurposing, but also indicate that screening a vast array of molecules may provide viable sources of alternative therapies for parasitic infection.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria,To whom all correspondence should be addressed: Oluyomi Stephen Adeyemi, Department of Biochemistry, The Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria; Tel: +234 7034 50 7902,
| | | | - Oluwakemi Josephine Awakan
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Tomilola Debby Olaolu
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Charles Obiora Nwonuma
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Omokolade Alejolowo
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | | | - Damilare Rotimi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics Department, Faculty of Veterinary Medicine, Damanhour University, Egypt
| |
Collapse
|
32
|
Deng Y, Wu T, Zhai SQ, Li CH. Recent progress on anti-Toxoplasma drugs discovery: Design, synthesis and screening. Eur J Med Chem 2019; 183:111711. [PMID: 31585276 DOI: 10.1016/j.ejmech.2019.111711] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023]
Abstract
Toxoplasma gondii severely threaten the health of immunocompromised patients and pregnant women as this parasite can cause several disease, including brain and eye disease. Current treatment for toxoplasmosis commonly have high cytotoxic side effects on host and require long durations ranging from one week to more than one year. The regiments lack efficacy to eradicate T. gondii tissue cysts to cure chromic infection results in the needs for long treatment and relapsing disease. In addition, there has not been approved drugs for treating the pregnant women infected by T. gondii. Moreover, Toxoplasma vaccine researches face a wide variety of challenges. Developing high efficient and low toxic agents against T. gondii is urgent and important. Over the last decade, tremendous progress have been made in identifying and developing novel compounds for the treatment of toxoplasmosis. This review summarized and discussed recent advances between 2009 and 2019 in exploring effective agents against T. gondii from five aspects of drug discovery.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Shao-Qin Zhai
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
33
|
Lapinskas PJ, Ben-Harari RR. Perspective on current and emerging drugs in the treatment of acute and chronic toxoplasmosis. Postgrad Med 2019; 131:589-596. [PMID: 31399001 DOI: 10.1080/00325481.2019.1655258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
No new drugs for treatment of toxoplasmosis have been approved in over 60 years, despite the burden of toxoplasmosis on human society. The small selection of effective drugs is limited by important side effects, often limiting patient use. This perspective highlights promising late-stage drug candidates in the treatment of toxoplasmosis. Presently, drugs target the tachyzoite form of the parasite Toxoplasma gondii responsible for the acute infection but do not eradicate the tissue cyst form underlying chronic infection. Pyrimethamine - the first-line and only approved drug for treatment of toxoplasmosis in the United States - inhibits parasite DNA synthesis by inhibiting dihydrofolate reductase (DHFR). Two novel DHFR inhibitors with improved potency and selectivity for parasite DHFR over human DHFR are in clinical-stage development. One of the most advanced and promising therapeutic targets, demonstrating potential to treat both acute and chronic toxoplasmosis, is the calcium-dependent protein kinase 1 (CDPK1) which plays an essential role in the intracellular replicative cycle of the parasite, and has no direct mammalian homolog. Two CDPK1 inhibitor programs have identified potent and selective lead series, demonstrating acceptable systemic and CNS exposure, and in vivo efficacy in animal models of acute and chronic infection. Physicians need a better arsenal of parasiticidal drugs for the treatment of toxoplasmosis, particularly those active against tissue cysts.
Collapse
|
34
|
Konstantinovic N, Guegan H, Stäjner T, Belaz S, Robert-Gangneux F. Treatment of toxoplasmosis: Current options and future perspectives. Food Waterborne Parasitol 2019; 15:e00036. [PMID: 32095610 PMCID: PMC7033996 DOI: 10.1016/j.fawpar.2019.e00036] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Toxoplasmosis is a worldwide parasitic disease infecting about one third of humans, with possible severe outcomes in neonates and immunocompromised patients. Despite continuous and successful efforts to improve diagnosis, therapeutic schemes have barely evolved since many years. This article aims at reviewing the main clinical trials and current treatment practices, and at addressing future perspectives in the light of ongoing researches.
Collapse
Affiliation(s)
- Neda Konstantinovic
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Hélène Guegan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | - Tijana Stäjner
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia
| | - Sorya Belaz
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000 Rennes, France
| | | |
Collapse
|
35
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Shahdin S, Daryani A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res 2018; 117:3045-3057. [PMID: 30088074 DOI: 10.1007/s00436-018-6027-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Currently, there is no approved therapy that can eradicate Toxoplasma gondii tissue cysts, which are responsible for chronic infection. This systematic review was performed to assess drugs or compounds that can be used as anti-T. gondii tissue cysts in vitro and in vivo. English electronic databases (i.e., PubMed, Science Direct, Scopus, Google Scholar, and Web of Science) were systematically searched for articles published up to 2017. A total of 55 papers published from 1987 to 2017 were eligible for inclusion in this systematic review. Among the drugs, atovaquone and azithromycin were found effective after long-term inoculation into mice; however, clinical cases of resistance to these drugs have been reported. Also, FR235222, QUI-11, tanshinone IIA, and hydroxyzine were shown to be effective against Toxoplasma cysts, but their effectiveness in vivo remains unknown. Additionally, compound 32, endochin-like quinolones, miltefosine, and guanabenz can be used as effective antiparasitic with the unique ability to reduce brain tissue cysts in chronically infected mice. Importantly, these antimicrobial agents are significant criteria for drug candidates. Future studies should focus on the biology and drug susceptibility of the cyst form of T. gondii in chronic toxoplasmosis patients to find more effective strategies that have sterilizing activity for eliminating T. gondii tissue cysts from the host, preventing disease relapse and potentially shortening the required duration of drug administration. Graphical abstract.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran
| | - Shayesteh Shahdin
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran.
| |
Collapse
|
36
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Liu H, Cai M. Effect of probucol on hemodynamics, rheology and blood lipid of diabetic retinopathy. Exp Ther Med 2018; 15:3809-3814. [PMID: 29581738 PMCID: PMC5863571 DOI: 10.3892/etm.2018.5917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
The effect of probucol in the treatment of diabetic retinopathy was investigated to analyze its impact on its hemodynamics, rheology and blood lipid. A total of 80 patients with diabetic retinopathy who were treated in the Ninth People's Hospital of Chongqing (Chongqing, China) from January 2015 to August 2016 were selected and divided into two groups by random number table, with 40 patients in each group. Control group was treated by conventional and intensive glycemic control and antihypertensive therapy, while observation group was orally administered with 0.375 g probucol twice a day on the basis of intensive therapy. Outpatient follow-up was performed to all the patients for 6 months, then, among the blood rheology, the changes in blood viscosity and erythrocyte aggregation indexes at different time points before and after intervention in the two groups were compared, mean blood flow velocities in renal artery, renal artery pulse indexes and renal artery resistance indexes at different time points were recorded, changes in blood lipid of the two groups before and after intervention were compared, and complication rates during the treatment were calculated. After intervention, the whole blood viscosity at high shear rate, whole blood viscosity at low shear rate and plasma viscosity in observation group were lower than those before intervention and lower than those in control group after intervention (P<0.05); The erythrocyte aggregation indexes in observation group were obviously increased compared with those in control group at 1 week, 1 month and 6 months after intervention (P<0.05). The mean blood flow velocities in renal artery in observation group were remarkably higher than those in control group at 1 week, 1 month and 6 months after intervention (P<0.05), while the renal artery pulse indexes and resistance indexes in observation group were lower than those in control group in the same period (P<0.05). In observation group, the levels of total cholesterol (TC), triglyeride (TG) and low density lipoprotein cholesterol (LDL-C) after intervention were decreased compared with those before intervention, while the level of high-density lipoprotein cholesterol (HDL-C) was increased. The levels of TC, TG and LDL-C in observation group were lower than those in control group after intervention, while the HDL-C level was higher (P<0.05). During the treatment, the total incidence of phlebitis, chills, fever, rash and maculopapule in observation group was obviously lower than that in control group. Probucol can significantly improve the hemodynamic and rheological indexes and lower blood lipid in the body, and is an effective medicine for diabetic retinopathy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Mingming Cai
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|
38
|
Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents. Parasitol Res 2017; 117:355-363. [DOI: 10.1007/s00436-017-5698-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|