1
|
Meng S, Gan W, Chen L, Wang N, Liu A. Intravoxel incoherent motion predicts positive surgical margins and Gleason score upgrading after radical prostatectomy for prostate cancer. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01645-2. [PMID: 37277573 DOI: 10.1007/s11547-023-01645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Whether Intravoxel incoherent motion (IVIM) can be used as a predictive tool of positive surgical margins (PSMs) and Gleason score (GS) upgrading in prostate cancer (PCa) patients after radical prostatectomy (RP) still remains unclear. The aim of this study is to explore the ability of IVIM and clinical characteristics to predict PSMs and GS upgrading. METHODS A total of 106 PCa patients after RP who underwent pelvic mpMRI (multiparametric Magnetic Resonance Imaging) between January 2016 and December 2021 and met the requirements were retrospectively included in our study. IVIM parameters were obtained using GE Functool post-processing software. Logistic regression models were fitted to confirm the predictive risk factor of PSMs and GS upgrading. The area under the curve and fourfold contingency table were used to evaluate the diagnostic efficacy of IVIM and clinical parameters. RESULTS Multivariate logistic regression analyses revealed that percent of positive cores, apparent diffusion coefficient and molecular diffusion coefficient (D) were independent predictors of PSMs (Odds Ratio (OR) were 6.07, 3.62 and 3.16, respectively), Biopsy GS and pseudodiffusion coefficient (D*) were independent predictors of GS upgrading (OR were 0.563 and 7.15, respectively). The fourfold contingency table suggested that combined diagnosis increased the ability of predicting PSMs but had no advantage in predicting GS upgrading except the sensitivity from 57.14 to 91.43%. CONCLUSIONS IVIM showed good performance in predicting PSMs and GS upgrading. Combining IVIM and clinical factors enhanced the performance of predicting PSMs, which may contribute to clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shuang Meng
- Department of Radiological, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Wanting Gan
- Department of Radiological, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Lihua Chen
- Department of Radiological, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Nan Wang
- Department of Radiological, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China
| | - Ailian Liu
- Department of Radiological, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Pathomics, the fusion of digitalized pathology and artificial intelligence, is currently changing the landscape of medical pathology and biologic disease classification. In this review, we give an overview of Pathomics and summarize its most relevant applications in urology. RECENT FINDINGS There is a steady rise in the number of studies employing Pathomics, and especially deep learning, in urology. In prostate cancer, several algorithms have been developed for the automatic differentiation between benign and malignant lesions and to differentiate Gleason scores. Furthermore, several applications have been developed for the automatic cancer cell detection in urine and for tumor assessment in renal cancer. Despite the explosion in research, Pathomics is not fully ready yet for widespread clinical application. SUMMARY In prostate cancer and other urologic pathologies, Pathomics is avidly being researched with commercial applications on the close horizon. Pathomics is set to improve the accuracy, speed, reliability, cost-effectiveness and generalizability of pathology, especially in uro-oncology.
Collapse
|
3
|
Comparing the expression profiles of steroid hormone receptors and stromal cell markers in prostate cancer at different Gleason scores. Sci Rep 2018; 8:14326. [PMID: 30254333 PMCID: PMC6156570 DOI: 10.1038/s41598-018-32711-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
The recent developments in anti-angiogenic and immunomodulatory drugs show that the tumour micro-environment (TME) becomes increasingly important in cancer research. Here we investigated the correlation between the Gleason score (GS) and the TME by comparing tissue expression profiles of steroid hormone receptors, cancer activated fibroblast (CAF) markers and vessel densities between different GS groups. Therefore, matched patient cohorts were composed for different GS (6-7-8). Tissue micro-arrays with 6 samples/patient were processed for immunohistochemistry. Stained slides were digitised, stroma and epithelium were selectively annotated, and all selected areas were quantitatively analysed for marker expression. The most striking findings were decreased stromal expression levels of several steroid hormone receptors, increased CAF-phenotypes and increased vessel densities in high GS prostate cancer compared to low GS prostate cancer and paired prostate non-tumour tissue. The present data reveal a complex correlation between prostate cancer differentiation and TME components and suggest that different GS can be associated with different possible actionable targets in the TME. The use of standardised digital image analysis tools generated robust and reproducible quantitative data, which is novel and more informative compared to the classic semi-quantitative and observer-dependent visual scoring of immunohistochemistry.
Collapse
|
4
|
Carleton NM, Zhu G, Gorbounov M, Miller MC, Pienta KJ, Resar LM, Veltri RW. PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis. Prostate 2018; 78. [PMID: 29520928 PMCID: PMC5882516 DOI: 10.1002/pros.23499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND There are few tissue-based biomarkers that can accurately predict prostate cancer (PCa) progression and aggressiveness. We sought to evaluate the clinical utility of prostate and breast overexpressed 1 (PBOV1) as a potential PCa biomarker. METHODS Patient tumor samples were designated by Grade Groups using the 2014 Gleason grading system. Primary radical prostatectomy tumors were obtained from 48 patients and evaluated for PBOV1 levels using Western blot analysis in matched cancer and benign cancer-adjacent regions. Immunohistochemical evaluation of PBOV1 was subsequently performed in 80 cancer and 80 benign cancer-adjacent patient samples across two tissue microarrays (TMAs) to verify protein levels in epithelial tissue and to assess correlation between PBOV1 proteins and nuclear architectural changes in PCa cells. Digital histomorphometric analysis was used to track 22 parameters that characterized nuclear changes in PBOV1-stained cells. Using a training and test set for validation, multivariate logistic regression (MLR) models were used to identify significant nuclear parameters that distinguish Grade Group 3 and above PCa from Grade Group 1 and 2 PCa regions. RESULTS PBOV1 protein levels were increased in tumors from Grade Group 3 and above (GS 4 + 3 and ≥ 8) regions versus Grade Groups 1 and 2 (GS 3 + 3 and 3 + 4) regions (P = 0.005) as assessed by densitometry of immunoblots. Additionally, by immunoblotting, PBOV1 protein levels differed significantly between Grade Group 2 (GS 3 + 4) and Grade Group 3 (GS 4 + 3) PCa samples (P = 0.028). In the immunohistochemical analysis, measures of PBOV1 staining intensity strongly correlated with nuclear alterations in cancer cells. An MLR model retaining eight parameters describing PBOV1 staining intensity and nuclear architecture discriminated Grade Group 3 and above PCa from Grade Group 1 and 2 PCa and benign cancer-adjacent regions with a ROC-AUC of 0.90 and 0.80, respectively, in training and test sets. CONCLUSIONS Our study demonstrates that the PBOV1 protein could be used to discriminate Grade Group 3 and above PCa. Additionally, the PBOV1 protein could be involved in modulating changes to the nuclear architecture of PCa cells. Confirmatory studies are warranted in an independent population for further validation.
Collapse
Affiliation(s)
- Neil M. Carleton
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Corresponding Authors: Neil M. Carleton, Carnegie Mellon University, Department of Biomedical Engineering, 5000 Forbes Ave., Pittsburgh, PA 15213, Tel: 412-266-1991, , . Robert W. Veltri, PhD, James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, Tel: 410-952-5411,
| | - Guangjing Zhu
- The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mikhail Gorbounov
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | | | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Linda M.S. Resar
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Robert W. Veltri
- The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Corresponding Authors: Neil M. Carleton, Carnegie Mellon University, Department of Biomedical Engineering, 5000 Forbes Ave., Pittsburgh, PA 15213, Tel: 412-266-1991, , . Robert W. Veltri, PhD, James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, Tel: 410-952-5411,
| |
Collapse
|