1
|
Yang J, Li Y, Han X, Li T, Li D, Liu Q, Yan L, Li F, Pei X, Feng Y, Lin Z, Fu Z, Wang C, Sun Q, Li C. Targeting estrogen mediated CYP4F2/CYP4F11-20-HETE metabolic disorder decelerates tumorigenesis in ER+ breast cancer. Biochem Biophys Rep 2024; 38:101706. [PMID: 38646426 PMCID: PMC11033080 DOI: 10.1016/j.bbrep.2024.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose As the most common subset of breast cancer (BC), estrogen receptor positive (ER+) BC accounting for 80% of cases, has become a global public health concern. The female hormone estrogen (E2) unequivocally drives ER + breast malignancies. The reasons that estrogen affects BC development has long been considered, yet further study remains to be conducted of the molecular events in the E2-estrogen receptor α (ERα) signaling pathway in ER + BC progression, especially lipid metabolism, so providing more options for tailored and individualized therapy. Our aim is to find out new targets and clinical biomarkers for ER + breast cancer treatment from the perspective of lipid metabolism. Methods Lipid metabolomics profiling was used to examine the membrane phospholipid stimulated by E2. Clinical BC samples were used to assess the association of CYP4F2, CYP4F11 expression with clinicopathological characteristics and patient outcomes. Some inhibitors of main enzymes in AA metabolism were used combined with E2 to assess roles of CYP4F2/CYP4F11 in the progression of ER + BC. CYP4F2, CYP4F11 overexpression and knockdown BC cell lines were employed to examine the effects of CYP4F2, CYP4F11 on cellular proliferation, apoptosis and tumor growth. Western blotting, qPCR, Immunohistochemical staining and flow cytometry were also conducted to determine the underlying mechanisms related to CYP4F2, CYP4F11 function. Results The activation of the CYP450 signaling pathway in arachidonic acid metabolism contributed to ER + BC tumorigenesis. In ER + BC, CYP4F2 and CYP4F11 overexpression induced by E2 could promote cancer cell proliferation and resistance to apoptosis by producing the metabolite 20-HETE and activating the antiapoptotic protein Bcl-2. CYP4F2 and CYP4F11 elevation correlates with poorer overall survival and disease-free survival in ER + BC patients. Conclusion CYP4F2, CYP4F11 and their metabolite 20-HETE could serve as effective prognostic markers and attractive therapeutic targets for novel anticancer drug development about ER + BC.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Qiao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Lizhong Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Fei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| | - Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, PR China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
2
|
Qin H, Zhou Y, Liu H, Yuan Y, Guo Q, Yuan M, Xi T, Zhang Y. 1-Benzylimidazole attenuates the stemness of breast cancer cells through partially targeting CYP4Z1. ENVIRONMENTAL TOXICOLOGY 2024; 39:1505-1520. [PMID: 37994574 DOI: 10.1002/tox.24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Cytochrome P450 (CYP) 4Z1 (CYP4Z1) has recently garnered much interest as its expression predicts a poor prognosis and as a oncogene in breast cancer, and overexpressed in other many cancers. We previously showed that CYP4Z1 acts as a promoter of cancer stem cells (CSCs) to facilitate the occurrence and development of breast cancer. Here, RNA sequencing found that 1-benzylimidazole (1-Benzy) held a preferable correlation with breast cancer and suppressed the expression of CSC makers. Further functional experiments, including mammary spheroid formation, wound-healing, transwell-invasion, detection of tumor initiation, and metastatic ability, showed that 1-Benzy suppressed the stemness and metastasis of breast cancer cells. Additionally, we further demonstrated that CYP4Z1 is necessary for 1-Benzy-mediated suppression on breast cancer stemness and 1-Benzy exerted a weaker effect in breast cancer cells with CYP4Z1 knockdown. Taken together, our data suggest that 1-Benzy might be a potential drug suppressing breast cancer stemness via targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| | - Yi Zhou
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Liu
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yaqin Yuan
- Microbiological Laboratory, Guizhou Center For Medical Device Testing, Guiyang, Guizhou, China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Manqin Yuan
- Department of Clinical Laboratory Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Xi
- School of Life Science and Technology, School of Engineering, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yujie Zhang
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang City, Guizhou, China
| |
Collapse
|
3
|
Qi D, Peng M. Ferroptosis-mediated immune responses in cancer. Front Immunol 2023; 14:1188365. [PMID: 37325669 PMCID: PMC10264078 DOI: 10.3389/fimmu.2023.1188365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Cell death is a universal biological process in almost every physiological and pathological condition, including development, degeneration, inflammation, and cancer. In addition to apoptosis, increasing numbers of cell death types have been discovered in recent years. The biological significance of cell death has long been a subject of interest and exploration and meaningful discoveries continue to be made. Ferroptosis is a newfound form of programmed cell death and has been implicated intensively in various pathological conditions and cancer therapy. A few studies show that ferroptosis has the direct capacity to kill cancer cells and has a potential antitumor effect. As the rising role of immune cells function in the tumor microenvironment (TME), ferroptosis may have additional impact on the immune cells, though this remains unclear. In this study we focus on the ferroptosis molecular network and the ferroptosis-mediated immune response, mainly in the TME, and put forward novel insights and directions for cancer research in the near future.
Collapse
Affiliation(s)
- Desheng Qi
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Milin Peng
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Oktem EK, Aydin B, Gulfidan G, Arga KY. A Transcriptomic and Reverse-Engineering Strategy Reveals Molecular Signatures of Arachidonic Acid Metabolism in 12 Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:127-138. [PMID: 36800175 DOI: 10.1089/omi.2022.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer and arachidonic acid (AA) have important linkages. For example, AA metabolites regulate several critical biological functions associated with carcinogenesis: angiogenesis, apoptosis, and cancer invasion. However, little is known about the comparative changes in metabolite expression of the arachidonic acid pathway (AAP) in carcinogenesis. In this study, we examined transcriptome data from 12 cancers, such as breast invasive carcinoma, colon adenocarcinoma, lung adenocarcinoma, and prostate adenocarcinoma. We also report here a reverse-engineering strategy wherein we estimated metabolic signatures associated with AAP by (1) making deductive inferences through transcriptome-level data extraction, (2) remodeling AA metabolism, and (3) performing a comparative analysis of cancer types to determine the similarities and differences between different cancer types with respect to AA metabolic alterations. We identified 77 AAP gene signatures differentially expressed in cancers and 37 AAP metabolites associated with them. Importantly, the metabolite 15(S)-HETE was identified in almost all cancers, while arachidonate, 5-HETE, PGF2α, 14,15-EET, 8,9-EET, 5,6-EET, and 20-HETE were discovered as other most regulated metabolites. This study shows that the 12 cancers studied herein, although in different branches of the AAP, have altered expression of AAP gene signatures. Going forward, AA related-cancer research generally, and the molecular signatures and their estimated metabolites reported herein specifically, hold broad promise for precision/personalized medicine in oncology as potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Shichiri M, Suzuki H, Isegawa Y, Tamai H. Application of regulation of reactive oxygen species and lipid peroxidation to disease treatment. J Clin Biochem Nutr 2023; 72:13-22. [PMID: 36777080 PMCID: PMC9899923 DOI: 10.3164/jcbn.22-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022] Open
Abstract
Although many diseases in which reactive oxygen species (ROS) and free radicals are involved in their pathogenesis are known, and antioxidants that effectively capture ROS have been identified and developed, there are only a few diseases for which antioxidants have been used for treatment. Here, we discuss on the following four concepts regarding the development of applications for disease treatment by regulating ROS, free radicals, and lipid oxidation with the findings of our research and previous reports. Concept 1) Utilization of antioxidants for disease treatment. In particular, the importance of the timing of starting antioxidant will be discussed. Concept 2) Therapeutic strategies using ROS and free radicals. Methods of inducing ferroptosis, which has been advocated as an iron-dependent cell death, are mentioned. Concept 3) Treatment with drugs that inhibit the synthesis of lipid mediators. In addition to the reduction of inflammatory lipid mediators by inhibiting cyclooxygenase and leukotriene synthesis, we will introduce the possibility of disease treatment with lipoxygenase inhibitors. Concept 4) Disease treatment by inducing the production of useful lipid mediators for disease control. We describe the treatment of inflammatory diseases utilizing pro-resolving mediators and propose potential compounds that activate lipoxygenase to produce these beneficial mediators.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
7
|
Yan L, Rust BM, Sundaram S, Picklo MJ, Bukowski MR. Alteration in Plasma Metabolome in High-Fat Diet-Fed Monocyte Chemotactic Protein-1 Knockout Mice Bearing Pulmonary Metastases of Lewis Lung Carcinoma. Nutr Metab Insights 2022; 15:11786388221111126. [PMID: 35959507 PMCID: PMC9358346 DOI: 10.1177/11786388221111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Both clinical and laboratory studies have shown that monocyte chemotactic protein-1 (MCP-1) is involved in cancer spread. To understand the role of MCP-1 in metabolism in the presence of metastasis, we conducted an untargeted metabolomic analysis of primary metabolism on plasma collected from a study showing that MCP-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma (LLC) to the lungs in mice fed a high-fat diet (HFD). In a 2 × 2 design, wild-type (WT) or Mcp-1 knockout (Mcp-1 -/-) mice maintained on the AIN93G standard diet or HFD were subcutaneously injected with LLC cells to induce lung metastasis. We identified 87 metabolites for metabolomic analysis from this study. Amino acid metabolism was altered considerably in the presence of LLC metastases with the aminoacyl-tRNA biosynthesis pathways as the leading pathway altered. The HFD modified lipid and energy metabolism, evidenced by lower contents of arachidonic acid, cholesterol, and long-chain saturated fatty acids and higher contents of glucose and pyruvic acid in mice fed the HFD. These findings were supported by network analysis showing alterations in fatty acid synthesis and glycolysis/gluconeogenesis pathways between the 2 diets. Furthermore, elevations of the citrate cycle intermediates (citric acid, fumaric acid, isocitric acid, and succinic acid) and glyceric acid in Mcp-1 -/- mice, regardless of diet, suggest the involvement of MCP-1 in mitochondrial energy metabolism during LLC metastasis. The present study demonstrates that MCP-1 deficiency and the HFD altered plasma metabolome in mice bearing LLC metastases. These findings can be useful in understanding the impact of obesity on prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Matthew J Picklo
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Michael R Bukowski
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| |
Collapse
|
8
|
Yan L, Sundaram S, Rust BM, Picklo MJ, Bukowski MR. Metabolomes of Lewis lung carcinoma metastases and normal lung tissue from mice fed different diets. J Nutr Biochem 2022; 107:109051. [DOI: 10.1016/j.jnutbio.2022.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
|
9
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Liu H, Qin H, Zhou Y, Yuan Y, Liu Y, Chen Y, Yang Y, Ni H, Xi T, Zheng L. HET0016 attenuates the stemness of breast cancer cells through targeting CYP4Z1. Mol Carcinog 2021; 60:413-426. [PMID: 33866606 DOI: 10.1002/mc.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/06/2023]
Abstract
Ours and other previous studies have shown that CYP4Z1 is specifically and highly expressed in breast cancer, and acts as a promoter for the stemness of breast cancer cells. Here, we explored whether targeting CYP4Z1 could attenuate the stemness of breast cancer cells using HET0016, which has been confirmed to be an inhibitor of CYP4Z1 by us and others. Using the transcriptome-sequencing analysis, we found that HET0016 suppressed the expression of cancer stem cell (CSC) markers and stem cell functions. Additionally, HET0016 indeed reduced the stemness of breast cancer cells, as evident by the decrease of stemness marker expression, CD44+ /CD24- subpopulation with stemness, mammary-spheroid formation, and tumor-initiating ability. Moreover, HET0016 suppressed the metastatic capability through in vitro and in vivo experiments. Furthermore, we confirmed that HET0016 suppressed CYP4Z1 activity, and HET0016-induced inhibition on the stemness and metastasis of breast cancer cells was rescued by CYP4Z1 overexpression. Thus, our results demonstrate that HET0016 can attenuate the stemness of breast cancer cells through targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Qin
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin Yuan
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yichen Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ying Chen
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Yang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Haiwei Ni
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lufeng Zheng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implications for human breast cancer. Oncol Lett 2021; 22:548. [PMID: 34093769 PMCID: PMC8170261 DOI: 10.3892/ol.2021.12809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
13
|
Ali S, Borin TF, Piranlioglu R, Ara R, Lebedyeva I, Angara K, Achyut BR, Arbab AS, Rashid MH. Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS One 2021; 16:e0246646. [PMID: 33544755 PMCID: PMC7864405 DOI: 10.1371/journal.pone.0246646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central nervous system. Recent investigations showed that traditional therapies along with antiangiogenic therapies failed due to the development of post-therapy resistance and recurrence. Previous investigations showed that there were changes in the cellular and metabolic compositions in the tumor microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and rethinking is needed how to treat GBM. It is hypothesized that the composition of TME-associated cells will be different based on the therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence and improve survival. Therefore, the purpose of this study is to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population following different treatments in a syngeneic model of GBM. In addition to these parameters, tumor growth and survival were also studied following different treatments. The results showed that changes in the TME-associated cells were dependent on the therapeutic agents, and the TME-targeting therapy improved the survival of the GBM bearing animals. The current GBM therapies should be revisited to add agents to prevent the accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be better to target TME-associated cells.
Collapse
Affiliation(s)
- Sehar Ali
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Thaiz F. Borin
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Raziye Piranlioglu
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia, United States of America
| | - Kartik Angara
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Bhagelu R. Achyut
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Ali Syed Arbab
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (ASA); (MHR)
| | - Mohammad H. Rashid
- Laboratory of Tumor Angiogenesis Initiative, Georgia Cancer Center, Augusta University, Augusta, Georgia, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (ASA); (MHR)
| |
Collapse
|
14
|
Dahn ML, Dean CA, Jo DB, Coyle KM, Marcato P. Human-specific GAPDH qRT-PCR is an accurate and sensitive method of xenograft metastasis quantification. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:398-408. [PMID: 33575432 PMCID: PMC7848707 DOI: 10.1016/j.omtm.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 10/28/2022]
Abstract
Metastasis is the primary cause of cancer-related mortality. Experimental models that accurately reflect changes in metastatic burden are essential tools for developing treatments and to gain a better understanding of disease. Murine xenograft tumor models mimic the human scenario and provide a platform for metastasis analyses. An ex vivo quantitative method, gaining favor for its ease and accuracy, is quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR); however, it is currently unclear how well this method correlates with gold-standard histological analysis, and its use has required detection of overexpressed exogenous genes. We have introduced a variation of the qRT-PCR method: human-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDH) qRT-PCR, which allows quantification of metastasis in xenograft models without the requirement of overexpressed exogenous genes. This makes the method easily amenable to many xenograft models without alteration of the cancer cells. We determined that the method is able to detect a few human cells within abundant mouse lung tissue. Further, the human-specific GAPDH qRT-PCR is more sensitive and correlates with histological analysis in terms of determining relative metastatic burden, suggesting that human-specific GAPDH qRT-PCR could be used as a primary method for quantification of disseminated human cells in murine xenograft models.
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Diana B Jo
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Krysta M Coyle
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
15
|
Luo B, Chen C, Wu X, Yan D, Chen F, Yu X, Yuan J. Cytochrome P450 2U1 Is a Novel Independent Prognostic Biomarker in Breast Cancer Patients. Front Oncol 2020; 10:1379. [PMID: 32850442 PMCID: PMC7419690 DOI: 10.3389/fonc.2020.01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The susceptibility of breast cancer is largely affected by the metabolic capacity of breast tissue. This ability depends in part on the expression profile of cytochrome P450 (CYPs). CYPs are a superfamily of enzymes with related catalysis to endogenous and exogenous bioactive substances, including xenobiotic metabolism, drugs, and some endogenous substances metabolism which activate cells and stimulate cell signaling pathways, such as arachidonic acid metabolism, steroid metabolism, fatty acid metabolism. Interestingly, CYP was electively expressed in different tumors, and mediated the metabolic activation of multiple carcinogens and participated in the activation and deactivation of tumor therapeutic drugs. However, the biological action of cytochrome P450 2U1 (CYP2U1) in breast carcinoma is little understood so far. Methods: To investigate the biological value of CYP2U1 in breast carcinoma, we performed immunohistochemical (IHC) analysis and survival analysis based on clinico-pathological data of breast cancer. Results: IHC analysis showed that the abundance of CYP2U1 protein was inversely proportional to the state of estrogen receptor(ER) (P < 0.05), and the lower the degree of tumor differentiation, the higher the protein abundance (P < 0.001). Additionally, compared with luminal tumors, the CYP2U1 protein content was more abundant in triple negative breast cancer (P < 0.05). Importantly, survival analysis showed that higher CYP2U1 protein levels predicted poor 5-year overall survival rate (P < 0.01), 5-year disease-free survival rate (P < 0.05), and 5-year metastatic-free survival rate (P < 0.01) for the entire enrolled breast cancer patients. Conclusions: CYP2U1 is generally closely related to the clinicopathological characteristics and is also an adverse prognostic factor for breast carcinoma patients, indicating that CYP2U1 is engaged in the malignant progression of breast carcinoma.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinxin Yu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Evangelista EA, Cho CW, Aliwarga T, Totah RA. Expression and Function of Eicosanoid-Producing Cytochrome P450 Enzymes in Solid Tumors. Front Pharmacol 2020; 11:828. [PMID: 32581794 PMCID: PMC7295938 DOI: 10.3389/fphar.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Oxylipins derived from the oxidation of polyunsaturated fatty acids (PUFAs) act as important paracrine and autocrine signaling molecules. A subclass of oxylipins, the eicosanoids, have a broad range of physiological outcomes in inflammation, the immune response, cardiovascular homeostasis, and cell growth regulation. Consequently, eicosanoids are implicated in the pathophysiology of various diseases, most notably cancer, where eicosanoid mediated signaling is involved in tumor development, progression, and angiogenesis. Cytochrome P450s (CYPs) are a superfamily of heme monooxygenases generally involved in the clearance of xenobiotics while a subset of isozymes oxidize PUFAs to eicosanoids. Several eicosanoid forming CYPs are overexpressed in tumors, elevating eicosanoid levels and suggesting a key function in tumorigenesis and progression of tumors in the lung, breast, prostate, and kidney. This review summarizes the current understanding of CYPs' involvement in solid tumor etiology and progression providing supporting public data for gene expression from The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Christi W Cho
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Theresa Aliwarga
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Rheem A Totah
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Rashid MH, Borin TF, Ara R, Angara K, Cai J, Achyut BR, Liu Y, Arbab AS. Differential in vivo biodistribution of 131I-labeled exosomes from diverse cellular origins and its implication for theranostic application. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102072. [PMID: 31376572 PMCID: PMC6814553 DOI: 10.1016/j.nano.2019.102072] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 07/21/2019] [Indexed: 12/21/2022]
Abstract
Exosomes are critical mediators of intercellular crosstalk and are regulator of the cellular/tumor microenvironment. Exosomes have great prospects for clinical application as a theranostic and prognostic probe. Nevertheless, the advancement of exosomes research has been thwarted by our limited knowledge of the most efficient isolation method and their in vivo trafficking. Here we have shown that a combination of two size-based methods using a 0.20 μm syringe filter and 100 k centrifuge membrane filter followed by ultracentrifugation yields a greater number of uniform exosomes. We also demonstrated the visual representation and quantification of the differential in vivo distribution of radioisotope 131I-labeled exosomes from diverse cellular origins, e.g., tumor cells with or without treatments, myeloid-derived suppressor cells and endothelial progenitor cells. We also determined that the distribution was dependent on the exosomal protein/cytokine contents. The applied in vivo imaging modalities can be utilized to monitor disease progression, metastasis, and exosome-based targeted therapy.
Collapse
Affiliation(s)
- Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Kartik Angara
- Department of Pediatrics & Human Development, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI, USA
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA; Cancer Animal Models Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
Batool A, Chen SR, Liu YX. Distinct Metabolic Features of Seminoma and Embryonal Carcinoma Revealed by Combined Transcriptome and Metabolome Analyses. J Proteome Res 2019; 18:1819-1826. [PMID: 30835130 DOI: 10.1021/acs.jproteome.9b00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seminoma and embryonal carcinoma (EC), two typical types of testicular germ cell tumors (TGCTs), present significant differences in growth behavior, expression characteristics, differentiation potential, clinical features, therapy, and prognosis. The purpose of this study was to compare the distinctive or preference metabolic pathways between seminoma and EC. The Cancer Genome Atlas revealed that many genes encoding metabolic enzymes could distinguish between seminoma and EC. Using well-characterized cell line models for seminoma (Tcam-2 cells) and EC (NT2 cells), we characterized their metabolite profiles using ultraperformance liquid chromatography coupled to Q-TOF mass spectrometry (UPLC/Q-TOF MS). In general, the integrated results from transcriptome and metabolite profiling revealed that seminoma and EC exhibited distinctive characteristics in the metabolisms of amino acids, glucose, fatty acids, sphingolipids, nucleotides, and drugs. Notably, an attenuation of citric acid cycle/mitochondrial oxidative phosphorylation and sphingolipid biosynthesis as well as an increase in arachidonic acid metabolism and (very) long-chain fatty acid abundance occurred in seminoma as compared with EC. Our study suggests histologic subtype-dependent metabolic reprogramming in TGCTs and will lead to a better understanding of the metabolic signatures and biology of TGCT subtypes.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
19
|
Fu Y, Guo F, Chen H, Lin Y, Fu X, Zhang H, Ding M. Core needle biopsy promotes lung metastasis of breast cancer: An experimental study. Mol Clin Oncol 2018; 10:253-260. [PMID: 30680204 DOI: 10.3892/mco.2018.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
Core needle biopsy (CNB) may be used to diagnose early-stage breast cancer, but it may increase the risk of distant metastasis of tumor cells. The aim of the present study was to explore the effect of CNB on the distant metastasis of breast cancer. A total of 30 BALB/c mice were divided into two groups, namely biopsy and non-biopsy groups. The biopsy-related lung metastasis model (biopsy group) was established by the inoculation in the mammary fat pad of the mouse breast cancer cell line 4T1 combined with CNB. Flow cytometry, quantitative polymerase chain reaction analysis, morphological analysis, as well as other techniques, were used to evaluate the biological behavior of the tumors in the mouse model. A stable and reliable lung metastasis model of breast cancer was successfully established. The number of metastatic lung nodules in the biopsy group was significantly higher compared with that in the non-biopsy group (P<0.05). Compared with the non-biopsy group, the mRNA expression of transforming growth factor (TGF)-β1, SOX4 and Ezh2 in the biopsy group was significantly upregulated (P<0.05) and the number of natural killer (NK) cells detected by flow cytometry was increased, but the difference was not statistically significant (P>0.05). Therefore, CNB was found to promote the lung metastasis of breast cancer, and the underlying mechanism may be associated with epithelial-to-mesenchymal transition (EMT) mediated by the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Yongqiang Fu
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Fangming Guo
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Haohao Chen
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Yiping Lin
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Xiaoyan Fu
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| | - Hui Zhang
- Department of Laboratory Animals Center, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang 321000, P.R. China
| | - Mingxing Ding
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P.R. China
| |
Collapse
|
20
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
21
|
Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int J Mol Sci 2017; 18:ijms18122661. [PMID: 29292756 PMCID: PMC5751263 DOI: 10.3390/ijms18122661] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.
Collapse
|