1
|
Wang Z, Zhang W, Chen L, Lu X, Tu Y. Lymphopenia in sepsis: a narrative review. Crit Care 2024; 28:315. [PMID: 39304908 DOI: 10.1186/s13054-024-05099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
This narrative review provides an overview of the evolving significance of lymphopenia in sepsis, emphasizing its critical function in this complex and heterogeneous disease. We describe the causal relationship of lymphopenia with clinical outcomes, sustained immunosuppression, and its correlation with sepsis prediction markers and therapeutic targets. The primary mechanisms of septic lymphopenia are highlighted. In addition, the paper summarizes various attempts to treat lymphopenia and highlights the practical significance of promoting lymphocyte proliferation as the next research direction.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
2
|
Yao H, Zhou Y, Geng Z, Gao F, Su D, Kang Y, Fu B. IMPLICATIONS OF YWHAH GENE EXPRESSION IN THE EARLY DETECTION OF SEPSIS. Shock 2024; 62:357-362. [PMID: 38904460 PMCID: PMC11460737 DOI: 10.1097/shk.0000000000002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
ABSTRACT Sepsis, a complex and multifaceted condition, is a common occurrence with serious implications for critically ill patients in the intensive care unit (ICU). The YWHAH gene encodes the 14-3-3n protein, a member of the 14-3-3 protein family. While existing research primarily focuses on the role of 14-3-3n in conditions such as schizophrenia and various cancers, our study revealed that the expression of the YWHAH gene remained relatively stable in both infected individuals and healthy controls. Through Venn plot analysis following weighted gene correlation network analysis, we observed a potential association between elevated YWHAH expression and the transition from infection to sepsis. In a comprehensive analysis of public single-cell transcriptome databases, the expression of YWHAH was found to be distinctive in cases of sepsis and infection. These findings were corroborated through an in vitro analysis utilizing real-time polymerase chain reaction. This study represents the initial identification of variations in YWHAH gene expression between patients with infection and sepsis, potentially offering insights for the development of early detection and treatment strategies for sepsis.
Collapse
Affiliation(s)
- Hua Yao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengguang Geng
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fei Gao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De Su
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Sawoo R, Dey R, Ghosh R, Bishayi B. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsis-induced macrophage polarization. J Appl Toxicol 2023; 43:1549-1572. [PMID: 37177863 DOI: 10.1002/jat.4496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Multi-organ dysfunction is one of the major reasons behind the high mortality of sepsis throughout the world. With the pathophysiology of sepsis remaining largely unknown, the uncontrolled reactive oxygen species (ROS) production along with the decreased antioxidants contributes to the progression toward septic shock. Being the effector cells of the innate immunity system, macrophages secrete both pro-inflammatory and anti-inflammatory mediators during inflammation. Lipopolysaccharide (LPS) binding to toll-like receptor 4 (TLR4) releases TNF-α, which initiates pro-inflammatory events through tumor necrosis factor receptor 1 (TNFR1) signaling. However, it is counteracted by the anti-inflammatory interleukin 10 (IL-10) causing decreased oxidative stress. Our study thus aimed to assess the effects of exogenous IL-10 treatment post-neutralization of TLR4 and TNFR1 (by anti-TLR4 antibody and anti-TNFR1 antibody, respectively) in an in vivo murine model of LPS-sepsis. We have also examined the tissue-specific antioxidant status in the spleen, liver, and lungs along with the serum cytokine levels in adult male Swiss albino mice to determine the functional association with the disease. The results showed that administration of recombinant IL-10 post-neutralization of the receptors was beneficial in shifting the macrophage polarization to the anti-inflammatory M2 phenotype. IL-10 treatment significantly downregulated the free radicals production resulting in diminished lipid peroxidase (LPO) levels. The increased antioxidant activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GRX ) conferred protection against LPS-induced sepsis. Western blot data further confirmed diminished expressions of TLR4 and TNFR1 along with suppressed stress-activated protein kinases/Jun amino-terminal kinases (SAPK/JNK) and increased SOD and CAT expressions, which altogether indicated that neutralization of TLR4 and TNFR1 along with IL-10 posttreatment might be a potential therapeutic measure for the treatment of sepsis.
Collapse
Affiliation(s)
- Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| |
Collapse
|
4
|
van Heerden PV, Abutbul A, Naama A, Maayan S, Makram N, Nachshon A, abu Jabal K, Hershkovitz O, Binder L, Shabat Y, Reicher B, Mevorach D. Apoptotic cells for treatment of acute respiratory distress syndrome associated with COVID-19. Front Immunol 2023; 14:1242551. [PMID: 37600829 PMCID: PMC10433372 DOI: 10.3389/fimmu.2023.1242551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Hyper-inflammatory immune response, a hallmark of severe COVID-19, is associated with increased mortality. Acute respiratory distress syndrome (ARDS) is a common manifestation. We undertook two phase I/II studies in five and then 16 subjects with severe/critical COVID-19 to assess the safety and preliminary efficacy of apoptotic cells (Allocetra™-OTS, Enlivex Therapeutics), a cellular immunomodulatory therapy that reprograms macrophages to reduce hyper-inflammatory response severity. Methods Eligible patients presenting to the Emergency Room with severe COVID-19 and respiratory dysfunction received one intravenous administration of Allocetra™-OTS and were monitored for adverse events (AEs) for 28 days. The primary aim was to determine the safety profile of treatment; secondary aims were recovery from ARDS, intensive care unit (ICU) and hospital length-of-stay, and mortality. Immune modulator markers were measured to elucidate the mechanism of action of Allocetra™-OTS. Results 21 patients with severe-critical COVID-19 of Gamma, Alpha and Delta variants, were treated with a single dose of apoptotic cells. 19/21 patients had mild-to-severe ARDS at presentation. Median age was 53 years, 16/21 were males, 16/21 were overweight/obese. No serious related adverse events (SAEs) were reported. All 21 study subjects survived to day 28 (end of study); 19/21 recovered completely. Comparable mortality rates at the hospital were 3.8%-8.9% for age- and gender-matched patients, and 39%-55% for critical patients. Recovering patients exhibited rapid ARDS resolution and parallel resolution of inflammation markers and elevated cytokines/chemokines. Conclusion In patients with severe/critical COVID-19 associated with ARDS, Allocetra™-OTS was safe, well-tolerated, and showed promising results for resolution of respiratory failure and inflammation. Trial registration https://clinicaltrials.gov/ct2/show/study/NCT04513470, https://clinicaltrials.gov/ct2/show/study/NCT04590053, Identifiers NCT04513470, NCT04590053.
Collapse
Affiliation(s)
| | - Avraham Abutbul
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ahmad Naama
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center and Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| | - Shlomo Maayan
- Infectious Diseases Division, Barzilai Medical Center, Ashkelon, Israel
| | - Nassar Makram
- Infectious Diseases Division, Barzilai Medical Center, Ashkelon, Israel
| | - Akiva Nachshon
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kamal abu Jabal
- Ziv Medical Center and Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | | - Lior Binder
- Enlivex Therapeutics Ltd., Ness Ziona, Israel
| | | | | | - Dror Mevorach
- Enlivex Therapeutics Ltd., Ness Ziona, Israel
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- The Institute of Rheumatology-Immunology-Rheumatology, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and Hebrew University-Hadassah Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
5
|
Baghela AS, Tam J, Blimkie TM, Dhillon BK, Hancock RE. Facilitating systems-level analyses of all-cause and Covid-mediated sepsis through SeptiSearch, a manually-curated compendium of dysregulated gene sets. Front Immunol 2023; 14:1135859. [PMID: 37304268 PMCID: PMC10250596 DOI: 10.3389/fimmu.2023.1135859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Background Sepsis is a dysfunctional host response to infection. The syndrome leads to millions of deaths annually (19.7% of all deaths in 2017) and is the cause of most deaths from severe Covid infections. High throughput sequencing or 'omics' experiments in molecular and clinical sepsis research have been widely utilized to identify new diagnostics and therapies. Transcriptomics, quantifying gene expression, has dominated these studies, due to the efficiency of measuring gene expression in tissues and the technical accuracy of technologies like RNA-Seq. Objective Most of these studies seek to uncover novel mechanistic insights into sepsis pathogenesis and diagnostic gene signatures by identifying genes differentially expressed between two or more relevant conditions. However, little effort has been made, to date, to aggregate this knowledge from such studies. In this study we sought to build a compendium of previously described gene sets that combines knowledge gained from sepsis-associated studies. This would enable the identification of genes most associated with sepsis pathogenesis, and the description of the molecular pathways commonly associated with sepsis. Methods PubMed was searched for studies using transcriptomics to characterize acute infection/sepsis and severe sepsis (i.e., sepsis combined with organ failure). Several studies were identified that used transcriptomics to identify differentially expressed (DE) genes, predictive/prognostic signatures, and underlying molecular responses and pathways. The molecules included in each gene set were collected, in addition to the relevant study metadata (e.g., patient groups used for comparison, sample collection time point, tissue type, etc.). Results After performing extensive literature curation of 74 sepsis-related publications involving transcriptomics, 103 unique gene sets (comprising 20,899 unique genes) from thousands of patients were collated together with associated metadata. Frequently described genes included in gene sets as well as the molecular mechanisms they were involved in were identified. These mechanisms included neutrophil degranulation, generation of second messenger molecules, IL-4 and -13 signaling, and IL-10 signaling among many others. The database, which we named SeptiSearch, is made available in a web application created using the Shiny framework in R, (available at https://septisearch.ca). Conclusions SeptiSearch provides members of the sepsis community the bioinformatic tools needed to leverage and explore the gene sets contained in the database. This will allow the gene sets to be further scrutinized and analyzed for their enrichment in user-submitted gene expression data and used for validation of in-house gene sets/signatures.
Collapse
|
6
|
Nedel WL, Strogulski NR, Rodolphi MS, Kopczynski A, Montes THM, Portela LV. SHORT-TERM INFLAMMATORY BIOMARKER PROFILES ARE ASSOCIATED WITH DEFICIENT MITOCHONDRIAL BIOENERGETICS IN LYMPHOCYTES OF SEPTIC SHOCK PATIENTS-A PROSPECTIVE COHORT STUDY. Shock 2023; 59:288-293. [PMID: 36795959 DOI: 10.1097/shk.0000000000002055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. Routine, complex I, complex II respiration, and biochemical coupling efficiency were measured to evaluate mitochondrial activity. We measured IL-1ß, IL-6, IL-10, total lymphocyte count, and C-reactive protein levels on days 1 and 3 of septic shock management as well as mitochondrial variables. The variability of these measurements was evaluated using delta counts (days 3-1 counts). Results: Sixty-four patients were included in this analysis. There was a negative correlation between complex II respiration and IL-1ß (Spearman ρ, -0.275; P = 0.028). Biochemical coupling efficiency at day 1 was negative correlated with IL-6: Spearman ρ, -0.247; P = 0.05. Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.
Collapse
|
7
|
Li YH, Hsu DZ, Liu CT, Chandrasekaran VRM, Liu MY. The protective effect of muscimol against systemic inflammatory response in endotoxemic mice is independent of GABAergic and cholinergic receptors. Can J Physiol Pharmacol 2022; 100:665-678. [PMID: 35856422 DOI: 10.1139/cjpp-2021-0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic inflammatory response syndrome plays an important role in the development of sepsis. GABAergic and cholinergic pathways activation are considered important for inflammatory response regulation. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-12, IL-10, as well as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) are important inflammatory mediators involved in the pathogenesis of sepsis. Muscimol, an active compound from the mushroom Amanita muscaria (L.) Lam., is a potent GABAA agonist, inhibits inflammatory response via activating GABAA receptor and vagus nerve. However, the effect of muscimol on lipopolysaccharide (LPS)-induced systemic inflammatory response is still unclear. Therefore, we studied the effects of muscimol on systemic inflammatory response and survival rate in endotoxemic mice. Mice endotoxemia was induced by LPS. Muscimol was given to mice or RAW264.7 cells 30 min before LPS (10 mg/kg, i.p., or 10 ng/mL, respectively). Mice received GABAergic and cholinergic receptor antagonists 30 min before muscimol and LPS. Muscimol decreased TNF-α, IL-1β, IL-12, iNOS-derived NO, and increased IL-10 levels and survival rate after LPS treatment. Muscimol significantly decreased nuclear factor kappa B (NF-κB) activity, increased IκB expression, and decreased pIKK expression in LPS-treated RAW264.7 cells. GABAergic and cholinergic antagonists failed to reverse muscimol's protection in LPS-treated mice. In conclusion, muscimol protected against systemic inflammatory response in endotoxemic mice may be partially independent of GABAergic and cholinergic receptors.
Collapse
Affiliation(s)
- Ya-Hui Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Victor Raj Mohan Chandrasekaran
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
8
|
Bivona Iii JJ, Mank MM, Stapleton RD, Files DC, Toth MJ, Poynter ME. Skeletal Muscle Myofibers Directly Contribute to LPS-Induced Systemic Inflammatory Tone. Front Pharmacol 2022; 13:917917. [PMID: 35814217 PMCID: PMC9260049 DOI: 10.3389/fphar.2022.917917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
The abundance, anatomical distribution, and vascularity of skeletal muscle make it a potentially important contributor to local cytokine production and systemic cytokine abundance during inflammatory events. An orchestrated balance between the production of pro- and anti-inflammatory mediators is necessary for proper immune function, yet the contribution of the body's largest organ system, comprised primarily of skeletal muscle myocytes that fuse to form myofibers, to this process is largely unknown. Endotoxin (lipopolysaccharide, LPS) stimulates toll-like receptor 4 (TLR4) to induce the production of several pro-inflammatory cytokines, including interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2), by a of myriad cell types. We sought to quantify the influence of myofibers on systemic cytokine concentrations following an acute endotoxemia challenge. To accomplish this, we generated muscle specific conditional knockouts for TLR4 (TLR4SMKO), IL-6 (IL6SMKO), and CCL2 (CCL2SMKO). We administered low concentrations of intravenous LPS (IV LPS) to these receptor and effector knockout mice and collected samples after 3 h. Using gene expression analysis of gastrocnemius muscle and serum cytokine measurements after IV LPS, we determined that deletion of myofiber IL-6 or CCL2 led to a 93% and 57% reduction of these specific cytokines in the systemic circulation, respectively. Myofiber specific TLR4 deletion decreased the expression of IL-6, CCL2, and C-X-C motif chemokine ligand 1 (CXCL1) in the gastrocnemius muscle. These data indicate the critical involvement and direct contribution of myofibers during the early systemic inflammatory cytokine response to endotoxin.
Collapse
Affiliation(s)
- Joseph J Bivona Iii
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Madeleine M Mank
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Renee D Stapleton
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - D Clark Files
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael J Toth
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Matthew E Poynter
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
9
|
Rutai A, Zsikai B, Tallósy SP, Érces D, Bizánc L, Juhász L, Poles MZ, Sóki J, Baaity Z, Fejes R, Varga G, Földesi I, Burián K, Szabó A, Boros M, Kaszaki J. A Porcine Sepsis Model With Numerical Scoring for Early Prediction of Severity. Front Med (Lausanne) 2022; 9:867796. [PMID: 35615093 PMCID: PMC9125192 DOI: 10.3389/fmed.2022.867796] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Sepsis can lead to organ dysfunctions with disturbed oxygen dynamics and life-threatening consequences. Since the results of organ-protective treatments cannot always be transferred from laboratory models into human therapies, increasing the translational potential of preclinical settings is an important goal. Our aim was to develop a standardized research protocol, where the progression of sepsis-related events can be characterized reproducibly in model experiments within clinically-relevant time frames. Methods Peritonitis was induced in anesthetized minipigs injected intraperitoneally with autofeces inoculum (n = 27) or with saline (sham operation; n = 9). The microbial colony-forming units (CFUs) in the inoculum were retrospectively determined. After awakening, clinically relevant supportive therapies were conducted. Nineteen inoculated animals developed sepsis without a fulminant reaction. Sixteen hours later, these animals were re-anesthetized for invasive monitoring. Blood samples were taken to detect plasma TNF-α, IL-10, big endothelin (bET), high mobility group box protein1 (HMGB1) levels and blood gases, and sublingual microcirculatory measurements were conducted. Hemodynamic, respiratory, coagulation, liver and kidney dysfunctions were detected to characterize the septic status with a pig-specific Sequential Organ Failure Assessment (pSOFA) score and its simplified version (respiratory, cardiovascular and renal failure) between 16 and 24 h of the experiments. Results Despite the standardized sepsis induction, the animals could be clustered into two distinct levels of severity: a sepsis (n = 10; median pSOFA score = 2) and a septic shock (n = 9; median pSOFA score = 8) subgroup at 18 h of the experiments, when the decreased systemic vascular resistance, increased DO2 and VO2, and markedly increased ExO2 demonstrated a compensated hyperdynamic state. Septic animals showed severity-dependent scores for organ failure with reduced microcirculation despite the adequate oxygen dynamics. Sepsis severity characterized later with pSOFA scores was in correlation with the germ count in the induction inoculum (r = 0.664) and CFUs in hemocultures (r = 0.876). Early changes in plasma levels of TNF-α, bET and HMGB1 were all related to the late-onset organ dysfunctions characterized by pSOFA scores. Conclusions This microbiologically-monitored, large animal model of intraabdominal sepsis is suitable for clinically-relevant investigations. The methodology combines the advantages of conscious and anesthetized studies, and mimics human sepsis and septic shock closely with the possibility of numerical quantification of host responses.
Collapse
Affiliation(s)
- Attila Rutai
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bettina Zsikai
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lajos Bizánc
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Juhász
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Marietta Zita Poles
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Center and Medical School, University of Szeged, Szeged, Hungary
| | - Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Center and Medical School, University of Szeged, Szeged, Hungary
| | - Roland Fejes
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Center and Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- *Correspondence: József Kaszaki
| |
Collapse
|
10
|
Antunes GL, Matzenbacher LS, Costa BP, de Sousa Basso B, Levorse VGS, Antunes KH, Costa-Ferro ZSM, de Oliveira JR. Methoxyeugenol Protects Against Lung Inflammation and Suppresses Neutrophil Extracellular Trap Formation in an LPS-Induced Acute Lung Injury Model. Inflammation 2022; 45:1534-1547. [PMID: 35267122 DOI: 10.1007/s10753-022-01639-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening acute inflammatory disease with high rates of morbidity and mortality worldwide. 4-Allyl-2,6-dimethoxyphenol (methoxyeugenol), a phenylpropanoid from a synthetic source, exhibits strong anti-inflammatory activity, but its effects on the inflammation of ALI have not yet been reported. In our study, the anti-inflammatory effects of methoxyeugenol were investigated on RAW 264.7 cells and a mice model of ALI. Our results showed that methoxyeugenol (7.5 and 30 µM) attenuated the proliferation and gene expression of interleukin (IL)-6 in LPS-stimulated RAW 264.7 cells. In a mice model of ALI induced with LPS, methoxyeugenol exhibited a significant protective effect, based on influx reduction of macrophages and neutrophils into the lungs; reduction in release of the cytokines IL-6, TNF-α, and IL-10; and in reactive oxygen species (ROS) formation. We show that the anti-inflammatory effects of methoxyeugenol are associated with the suppression of the NFκB signaling pathway. Moreover, we demonstrated for the first time that a phenolic compound, from a synthetic source, protects against lung tissue inflammation and promotes a reduction of NET formation. These findings provided evidence for the use of methoxyeugenol as a new strategy to control inflammation in ALI disease.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil.
| | - Lucas Strassburger Matzenbacher
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil
| | - Bruna Pasqualotto Costa
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil
| | - Bruno de Sousa Basso
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande Do Sul (BraIns), Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
11
|
Luck ME, Li X, Herrnreiter CJ, Choudhry MA. Ethanol Intoxication and Burn Injury Increases Intestinal Regulatory T Cell Population and Regulatory T Cell Suppressive Capability. Shock 2022; 57:230-237. [PMID: 34482318 PMCID: PMC8758514 DOI: 10.1097/shk.0000000000001853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Traumatic injuries, such as burn, are often complicated by ethanol intoxication at the time of injury. This leads to a myriad of complications and post-burn pathologies exacerbated by aberrant immune responses. Recent findings suggest that immune cell dysfunction in the gastrointestinal system is particularly important in deleterious outcomes associated with burn injuries. In particular, intoxication at the time of burn injury leads to compromised intestinal T cell responses, which can diminish intestinal immunity and promote bacterial translocation, allowing for increased secondary infections in the injured host and associated sequelae, such as multiple organ failure and sepsis. Regulatory T cells (Treg) have been identified as important mediators of suppressing effector T cell function. Therefore, the goal of this study was to assess the effects of ethanol intoxication and burn injury on Treg populations in small intestinal immune organs. We also evaluated the suppressive capability of Tregs isolated from injured animals. Male C57BL/6 mice were gavaged with 2.9 g/kg ethanol before receiving a ∼12.5% total body surface area scald burn. One day after injury, we identified a significant increase in Tregs number in small intestine Peyer's patches (∼×1.5) and lamina propria (∼×2). Tregs-producing cytokine IL-10 were also increased in both tissues. Finally, Tregs isolated from ethanol and burn-injured mice were able to suppress proliferation of effector T cells to a greater degree than sham vehicle Tregs. This was accompanied by increased levels of IL-10 and decreased levels of pro-proliferative cytokine IL-2 in cultures containing ethanol + burn Tregs compared with sham Tregs. These findings suggest that Treg populations are increased in intestinal tissues 1 day following ethanol intoxication and burn injury. Tregs isolated from ethanol and burn-injured animals also exhibit a greater suppression of effector T cell proliferation, which may contribute to altered T cell responses following injury.
Collapse
Affiliation(s)
- Marisa E. Luck
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Xiaoling Li
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Caroline J. Herrnreiter
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| |
Collapse
|
12
|
Pretreatment with 6-Gingerol Ameliorates Sepsis-Induced Immune Dysfunction by Regulating the Cytokine Balance and Reducing Lymphocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5427153. [PMID: 35003518 PMCID: PMC8731291 DOI: 10.1155/2021/5427153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
Abstract
Sepsis is characterized by an initial net hyperinflammatory response, followed by a period of immunosuppression, termed immunoparalysis. During this immunosuppressive phase, patients may have difficulty eradicating invading pathogens and are susceptible to life-threatening secondary hospital-acquired infections. Due to progress in antimicrobial treatment and supportive care, most patients survive early sepsis. Mortality is more frequently attributed to subsequent secondary nosocomial infections and multiorgan system failure. 6-Gingerol is the major pharmacologically active component of ginger. Although it is known to exhibit a variety of biological activities, including anti-inflammation and antioxidation, the role of 6-gingerol in sepsis-induced immune dysfunction remains elusive. Thus, we investigated whether 6-gingerol improves septic host response to infections during sepsis. 6-Gingerol-treated mice showed significantly lower mortality in polymicrobial sepsis induced by cecal ligation and puncture LPS via enhanced bacterial clearance in the peritoneum, blood, and organs (liver, spleen, and kidney) and inhibited the production of TNF-α and IL-6 in TLR2 and/or TLR4-stimulated macrophages. In addition, we demonstrated that survival improvement of secondary infection following septic insult was associated with an initial response of enhanced neutrophil numbers and function at the infection site, reduced apoptosis of immune cells, and a shift from a T helper cell type 2 (Th2) to a T helper cell type 1 (Th1) cytokine balance in the hypoinflammation phase. Our overall findings suggest that 6-gingerol potentially restores sepsis-induced immune dysfunction by shifting the balance of Th1/Th2 and by regulating apoptosis of immune cells.
Collapse
|
13
|
High-Fat Diet-Induced Fatty Liver Is Associated with Immunosuppressive Response during Sepsis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5833857. [PMID: 34925696 PMCID: PMC8674062 DOI: 10.1155/2021/5833857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
High-fat diet-induced fatty liver is an indolent and chronic disease accompanied by immune dysfunction and metabolic disturbances involving numerous biological pathways. This study investigated how this abnormal metabolic disorder influences sepsis in mice. Mice were fed with normal chow (NC) or high-fat diet (HFD), and palmitic acid (PA) was used to treat hepatocytes to mimic fat accumulation in vitro. Lipopolysaccharide (LPS) was used to induce sepsis and related immune responses. Mice fed on a high-fat diet displayed higher mortality and more severe liver damage but compromised immunoreaction. The supernatant from PA-treated primary hepatocytes markedly diminished the inflammatory cytokine expression of macrophages after LPS stimulation, which showed a state of immunosuppression. Metabolomics analysis indicated the level of many key metabolites with possible roles in immunoreaction was altered in the HFD and PA groups compared with corresponding controls; specifically, β-hydroxybutyric acid (BHB) showed an immunosuppressive effect on Raw264.7 cells during the LPS stimulation. Transcriptomic analysis suggested that several differential signaling pathways may be associated with the alteration of immune function between the NC and HFD groups, as well as in the in vitro model. Our study suggests that the consumption of HFD may alter the hepatic metabolic profile, and that certain metabolites may remold the immune system to immunosuppressive state in the context of sepsis.
Collapse
|
14
|
van Heerden PV, Abutbul A, Sviri S, Zlotnick E, Nama A, Zimro S, El-Amore R, Shabat Y, Reicher B, Falah B, Mevorach D. Apoptotic Cells for Therapeutic Use in Cytokine Storm Associated With Sepsis- A Phase Ib Clinical Trial. Front Immunol 2021; 12:718191. [PMID: 34659208 PMCID: PMC8515139 DOI: 10.3389/fimmu.2021.718191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis has no proven specific pharmacologic treatment and reported mortality ranges from 30%–45%. The primary aim of this phase IB study was to determine the safety profile of Allocetra™-OTS (early apoptotic cell) infusion in subjects presenting to the emergency room with sepsis. The secondary aims were to measure organ dysfunction, intensive care unit (ICU) and hospital stays, and mortality. Exploratory endpoints included measuring immune modulator agents to elucidate the mechanism of action. Methods Ten patients presenting to the emergency room at the Hadassah Medical Center with sepsis were enrolled in this phase Ib clinical study. Enrolled patients were males and females aged 51–83 years, who had a Sequential Organ Failure Assessment (SOFA) score ≥2 above baseline and were septic due to presumed infection. Allocetra™-OTS was administered as a single dose (day +1) or in two doses of 140×106 cells/kg on (day +1 and +3), following initiation of standard-of-care (SOC) treatment for septic patients. Safety was evaluated by serious adverse events (SAEs) and adverse events (AEs). Organ dysfunction, ICU and hospital stays, and mortality, were compared to historical controls. Immune modulator agents were measured using Luminex® multiplex analysis. Results All 10 patients had mild-to-moderate sepsis with SOFA scores ranging from 2–6 upon entering the study. No SAEs and no related AEs were reported. All 10 study subjects survived, while matched historical controls had a mortality rate of 27%. The study subjects exhibited rapid resolution of organ dysfunction and had significantly shorter ICU stays compared to matched historical controls (p<0.0001). All patients had both elevated pro- and anti-inflammatory cytokines, chemokines, and additional immune modulators that gradually decreased following treatment. Conclusion Administration of apoptotic cells to patients with mild-to-moderate sepsis was safe and had a significant immuno-modulating effect, leading to early resolution of the cytokine storm. Clinical Trial Registration ClinicalTrials.gov Identifier: NCT03925857. (https://clinicaltrials.gov/ct2/show/study/NCT03925857).
Collapse
Affiliation(s)
| | - Avraham Abutbul
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sigal Sviri
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Zlotnick
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Ahmad Nama
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Sebastian Zimro
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raja El-Amore
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Yehudit Shabat
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Barak Reicher
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Batla Falah
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel.,Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Abstract
ABSTRACT Burn injuries are a common form of traumatic injury that leads to significant morbidity and mortality worldwide. Burn injuries are characterized by inflammatory processes and alterations in numerous organ systems and functions. Recently, it has become apparent that the gastrointestinal bacterial microbiome is a key component of regulating the immune response and recovery from burn and can also contribute to significant detrimental sequelae after injury, such as sepsis and multiple organ failure. Microbial dysbiosis has been linked to multiple disease states; however, its role in exacerbating acute traumatic injuries, such as burn, is poorly understood. In this article, we review studies that document changes in the intestinal microbiome after burn injury, assess the implications in post-burn pathogenesis, and the potential for further discovery and research.
Collapse
Affiliation(s)
- Marisa E. Luck
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Caroline J. Herrnreiter
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Burn & Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Biochemistry and Molecular Biology Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
16
|
Lauer A, Burkard M, Niessner H, Leischner C, Renner O, Vollbracht C, Michels H, Busch C, Sinnberg T, Venturelli S. Ex Vivo Evaluation of the Sepsis Triple Therapy High-Dose Vitamin C in Combination with Vitamin B1 and Hydrocortisone in a Human Peripheral Blood Mononuclear Cells (PBMCs) Model. Nutrients 2021; 13:nu13072366. [PMID: 34371879 PMCID: PMC8308809 DOI: 10.3390/nu13072366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is an extremely complex clinical syndrome, usually involving an excessive inflammatory response including an overshooting cytokine release that damages tissue and organs of the patient. Due to the severity of this condition, it is estimated that over 11 million people die from sepsis each year. Despite intensive research in the field, there is still no specific therapy for sepsis. Many sepsis patients show a marked deficiency of vitamin C. 9 out of 10 sepsis patients have a hypovitaminosis C, and every third patient even shows a clinical deficiency in the scurvy range. In addition, low vitamin C levels of intensive care sepsis patients correlate with a higher need for vasopressors, higher Sequential Organ Failure Assessment (SOFA) scores, and increased mortality. Based on this observation and the conducted clinical trials using vitamin C as sepsis therapy in intensive care patients, the aim of the present ex vivo study was to evaluate the effects of high-dose vitamin C alone and in a triple combination supplemented with vitamin B1 (thiamine) and hydrocortisone on the lipopolysaccharide (LPS)-induced cytokine response in peripheral blood mononuclear cells (PBMCs) from healthy human donors. We found that all corticosteroid combinations strongly reduced the cytokine response on RNA- and protein levels, while high-dose vitamin C alone significantly diminished the PBMC mediated secretion of the cytokines interleukin (IL)-10, IL-23, and monocyte chemo-attractant protein (MCP-1), which mediate the inflammatory response. However, vitamin C showed no enhancing effect on the secretion of further cytokines studied. This data provides important insights into the possible immunomodulatory function of vitamin C in an ex vivo setting of human PBMCs and the modulation of their cytokine profile in the context of sepsis. Since vitamin C is a vital micronutrient, the restoration of physiologically adequate concentrations should be integrated into routine sepsis therapy, and the therapeutic effects of supraphysiological concentrations of vitamin C in sepsis patients should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Annie Lauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
| | - Markus Burkard
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tübingen, Germany
| | - Christian Leischner
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Olga Renner
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
| | - Claudia Vollbracht
- Pascoe Pharmazeutische Praeparate GmbH, 35394 Giessen, Germany; (C.V.); (H.M.)
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, 35394 Giessen, Germany; (C.V.); (H.M.)
| | | | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany; (A.L.); (H.N.)
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tübingen, Germany
- Correspondence: (T.S.); (S.V.)
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Nutritional Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany; (M.B.); (C.L.); (O.R.)
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tübingen, 72024 Tübingen, Germany
- Correspondence: (T.S.); (S.V.)
| |
Collapse
|
17
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
18
|
Khosrojerdi A, Soudi S, Zavaran Hosseini A, Ghaffari Khaligh S, Hashemi SM. Imipenem alters systemic and liver inflammatory responses in CLP- induced sepsis mice in a dose-dependent manner. Int Immunopharmacol 2021; 93:107421. [PMID: 33548581 DOI: 10.1016/j.intimp.2021.107421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Considering the role of inflammation in the outcome of sepsis and the widespread use of imipenem in the disease, this study was designed to assess the effect of imipenem on the dynamics of inflammatory responses in the sepsis mouse model. METHODS Cecal Ligation and Puncture (CLP) model was used to induce sepsis in mice. C57BL/6 mice were divided into sham, CLP-induced sepsis mice, CLP-induced sepsis mice receiving 25 mg/kg, and 125 mg/kg imipenem. Blood and liver samples were obtained and bacterial load, endotoxin level, and liver enzymes were evaluated. The concentration and mRNA expression of cytokines were also determined. RESULTS Sepsis mice treated with a high dose (125 mg/kg) of imipenem showed a significant reduction in bacterial load, while increased liver enzymes, endotoxin level, and inflammatory cytokine production in plasma and liver. In contrast, significant reduction in the liver enzymes, bacterial load, endotoxin levels, and inflammatory cytokine levels was observed in the mice treated with a low dose (25 mg/kg) of imipenem compared with other mice groups. Liver tissue pathology of mice indicated little tissue destruction in the sepsis mice treated with 25 mg/kg of imipenem compared to other groups. Mice receiving 25 mg/kg of imipenem had better survival rate. CONCLUSIONS Our results demonstrated the dose-dependent effect of subcutaneous administration of imipenem on the inflammatory responses in sepsis mice. A dose of 25 mg/kg imipenem resulted in better pathology, lower inflammatory mediators, and increased survival rate in sepsis mice.
Collapse
Affiliation(s)
- Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Ghaffari Khaligh
- Department of Pathology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Fabri A, Kandara K, Coudereau R, Gossez M, Abraham P, Monard C, Cour M, Rimmelé T, Argaud L, Monneret G, Venet F. Characterization of Circulating IL-10-Producing Cells in Septic Shock Patients: A Proof of Concept Study. Front Immunol 2021; 11:615009. [PMID: 33613540 PMCID: PMC7890231 DOI: 10.3389/fimmu.2020.615009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a worldwide health priority characterized by the occurrence of severe immunosuppression associated with increased risk of death and secondary infections. Interleukin 10 (IL-10) is a potent immunosuppressive cytokine which plasma concentration is increased in septic patients in association with deleterious outcomes. Despite studies evaluating IL-10 production in specific subpopulations of purified cells, the concomitant description of IL-10 production in monocytes and lymphocytes in septic patients' whole blood has never been performed. In this pilot study, we characterized IL-10 producing leukocytes in septic shock patients through whole blood intracellular staining by flow cytometry. Twelve adult septic shock patients and 9 healthy volunteers were included. Intracellular tumor necrosis factor-α (TNFα) and IL-10 productions after lipopolysaccharide stimulation by monocytes and IL-10 production after PMA/Ionomycine stimulation by lymphocytes were evaluated. Standard immunomonitoring (HLA-DR expression on monocytes, CD4+ T lymphocyte count) of patients was also performed. TNFα expression by stimulated monocytes was reduced in patients compared with controls while IL-10 production was increased. This was correlated with a reduced monocyte HLA-DR expression. B cells, CD4+, and CD4- T lymphocytes were the three circulating IL-10 producing lymphocyte subsets in both patients and controls. No difference in IL-10 production between patients and controls was observed for B and CD4- T cells. However, IL-10 production by CD4+ T lymphocytes significantly increased in patients in parallel with reduced CD4+ T cells number. Parameters reflecting altered monocyte (increased IL-10 production, decreased HLA-DR expression and decreased TNFα synthesis) and CD4+ T lymphocyte (increased IL-10 production, decreased circulating number) responses were correlated. Using a novel technique for intracellular cytokine measurement in whole blood, our results identify monocytes and CD4+ T cells as the main IL-10 producers in septic patients' whole blood and illustrate the development of a global immunosuppressive profile in septic shock. Overall, these preliminary results add to our understanding of the global increase in IL-10 production induced by septic shock. Further research is mandatory to determine the pathophysiological mechanisms leading to such increased IL-10 production in monocytes and CD4+ T cells.
Collapse
Affiliation(s)
- Astrid Fabri
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Khalil Kandara
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Paul Abraham
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Céline Monard
- Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Martin Cour
- Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,Hospices Civils de Lyon-bioMérieux, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
20
|
Henry BM, Benoit SW, Vikse J, Berger BA, Pulvino C, Hoehn J, Rose J, Santos de Oliveira MH, Lippi G, Benoit JL. The anti-inflammatory cytokine response characterized by elevated interleukin-10 is a stronger predictor of severe disease and poor outcomes than the pro-inflammatory cytokine response in coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2020; 59:599-607. [PMID: 33554561 DOI: 10.1515/cclm-2020-1284] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Severe coronavirus disease 2019 (COVID-19) is associated with a dysregulated immune state. While research has focused on the hyperinflammation, little research has been performed on the compensatory anti-inflammatory response. The aim of this study was to evaluate the anti-inflammatory cytokine response to COVID-19, by assessing interleukin-10 (IL-10) and IL-10/lymphocyte count ratio and their association with outcomes. METHODS Adult patients presenting to the emergency department (ED) with laboratory-confirmed COVID-19 were recruited. The primary endpoint was maximum COVID-19 severity within 30 days of index ED visit. RESULTS A total of 52 COVID-19 patients were enrolled. IL-10 and IL-10/lymphocyte count were significantly higher in patients with severe disease (p<0.05), as well as in those who developed severe acute kidney injury (AKI) and new positive bacterial cultures (all p≤0.01). In multivariable analysis, a one-unit increase in IL-10 and IL-10/lymphocyte count were associated with 42% (p=0.031) and 32% (p=0.013) increased odds, respectively, of severe COVID-19. When standardized to a one-unit standard deviations scale, an increase in the IL-10 was a stronger predictor of maximum 30-day severity and severe AKI than increases in IL-6 or IL-8. CONCLUSIONS The hyperinflammatory response to COVID-19 is accompanied by a simultaneous anti-inflammatory response, which is associated with poor outcomes and may increase the risk of new positive bacterial cultures. IL-10 and IL-10/lymphocyte count at ED presentation were independent predictors of COVID-19 severity. Moreover, elevated IL-10 was more strongly associated with outcomes than pro-inflammatory IL-6 or IL-8. The anti-inflammatory response in COVID-19 requires further investigation to enable more precise immunomodulatory therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Brandon Michael Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefanie W Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jens Vikse
- Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Brandon A Berger
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christina Pulvino
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Hoehn
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James Rose
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Justin L Benoit
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Mishra HK, Ma J, Mendez D, Hullsiek R, Pore N, Walcheck B. Blocking ADAM17 Function with a Monoclonal Antibody Improves Sepsis Survival in a Murine Model of Polymicrobial Sepsis. Int J Mol Sci 2020; 21:ijms21186688. [PMID: 32932701 PMCID: PMC7555020 DOI: 10.3390/ijms21186688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Sepsis is the culmination of hyperinflammation and immune suppression in response to severe infection. Neutrophils are critical early responders to bacterial infection but can become highly dysfunctional during sepsis and other inflammatory disorders. The transmembrane protease ADAM17 (a disintegrin and metalloproteinase 17) is expressed by leukocytes and most other cells and has many substrates that regulate inflammation. We have reported that conditional knockout mice lacking ADAM17 in all leukocytes had a survival advantage during sepsis, which was associated with improved neutrophil effector functions. These and other findings indicate aberrant ADAM17 activity during sepsis. For this study, we evaluated for the first time the effects of an ADAM17 function blocking monoclonal antibody (mAb) on the pathogenesis of polymicrobial sepsis. Mice treated with the ADAM17 mAb MEDI3622 prior to sepsis induction exhibited significantly decreased mortality. When the ADAM17 mAb was combined with antibiotic administration, sepsis survival was markedly enhanced compared to either intervention alone, which was associated with a significant reduction in plasma levels of various inflammation-related factors. MEDI3622 and antibiotic administration after sepsis induction also significantly improved survival. Our results indicate that the combination of blocking ADAM17 as an immune modulator and appropriate antibiotics may provide a new therapeutic avenue for sepsis treatment.
Collapse
Affiliation(s)
- Hemant K. Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA; (H.K.M.); (J.M.); (D.M.); (R.H.)
| | - Jing Ma
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA; (H.K.M.); (J.M.); (D.M.); (R.H.)
| | - Daniel Mendez
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA; (H.K.M.); (J.M.); (D.M.); (R.H.)
| | - Robert Hullsiek
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA; (H.K.M.); (J.M.); (D.M.); (R.H.)
| | - Nabendu Pore
- Early Oncology Clinical Science, Astra Zeneca, One Medimmune Way, Gaithersburg, MD 20878, USA;
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA; (H.K.M.); (J.M.); (D.M.); (R.H.)
- Correspondence:
| |
Collapse
|
22
|
Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve Attenuates the Acute Inflammatory Response After Lung Lobectomy. World J Surg 2020; 44:3167-3174. [DOI: 10.1007/s00268-020-05543-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Siniavin AE, Streltsova MA, Kudryavtsev DS, Shelukhina IV, Utkin YN, Tsetlin VI. Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression. Biomolecules 2020; 10:E507. [PMID: 32230846 PMCID: PMC7225944 DOI: 10.3390/biom10040507] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7 nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR activation on macrophages reduces the production of proinflammatory cytokines, the role of these receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation 14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987 to THP-1Mϕ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation on THP-1Mϕ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both playing an important role in preventing immunosuppressive states.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Denis S. Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Irina V. Shelukhina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Yuri N. Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
| | - Victor I. Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.S.K.); (I.V.S.); (Y.N.U.); (V.I.T.)
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University, Moscow 115409, Russia
| |
Collapse
|
24
|
Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A 2019; 116:3688-3694. [PMID: 30808756 DOI: 10.1073/pnas.1814273116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a deleterious immune response to infection that leads to organ failure and is the 11th most common cause of death worldwide. Despite plaguing humanity for thousands of years, the host factors that regulate this immunological response and subsequent sepsis severity and outcome are not fully understood. Here we describe how the Western diet (WD), a diet high in fat and sucrose and low in fiber, found rampant in industrialized countries, leads to worse disease and poorer outcomes in an LPS-driven sepsis model in WD-fed mice compared with mice fed standard fiber-rich chow (SC). We find that WD-fed mice have higher baseline inflammation (metaflammation) and signs of sepsis-associated immunoparalysis compared with SC-fed mice. WD mice also have an increased frequency of neutrophils, some with an "aged" phenotype, in the blood during sepsis compared with SC mice. Importantly, we found that the WD-dependent increase in sepsis severity and higher mortality is independent of the microbiome, suggesting that the diet may be directly regulating the innate immune system through an unknown mechanism. Strikingly, we could predict LPS-driven sepsis outcome by tracking specific WD-dependent disease factors (e.g., hypothermia and frequency of neutrophils in the blood) during disease progression and recovery. We conclude that the WD is reprogramming the basal immune status and acute response to LPS-driven sepsis and that this correlates with alternative disease paths that lead to more severe disease and poorer outcomes.
Collapse
|
25
|
Sheikh Motahar Vahedi H, Bagheri A, Jahanshir A, Seyedhosseini J, Vahidi E. Association of Lymphopenia with Short Term Outcomes of Sepsis Patients; a Brief Report. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2019; 7:e14. [PMID: 30847449 PMCID: PMC6377227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Studies have claimed that low lymphocyte count is independently correlated with 28-day survival of sepsis patients. Therefore, this study aimed to evaluate the value of lymphopenia in predicting the short-term outcome of sepsis patients. METHODS This cross-sectional study was performed on sepsis patients referred to the emergency department during an 8-month period and relationship of lymphopenia with 28-day mortality and probability of septic shock and readmission due to sepsis was assessed. RESULTS 124 cases with the mean age of 66.12 15.82 (21-90) years were studied (54.8% male). 81 (65.3%) cases had lymphopenia (59.3% male). Lymphopenic patients had a significantly higher mean age (p = 0.003), higher need for ICU admission (p < 0.001), higher prevalence of 28-day septic shock (p < 0.001), higher 28-day mortality (p < 0.001), higher probability of readmission due to sepsis (p = 0.048), and higher SOFA score (p < 0.001). During 28 days of follow up, 57 (46%) patients were expired. They had a higher prevalence of septic shock (p < 0.001) and higher SOFA score (p < 0.001). Multivariate analysis showed that septic shock (OR=364.6; 95% CI: 26.3 to 5051.7; p = 0.001) and lymphopenia (OR=19.2; 95% CI: 1.7 to 211.3; p = 0.016) were the independent predictors of 28-day mortality. CONCLUSIONS Based on the findings, lymphopenia was independently associated with higher 28-day mortality and lymphopenic patients were older than the control group and had a significantly higher need for ICU admission, higher probability of 28-day septic shock and readmission due to sepsis, and higher SOFA score.
Collapse
Affiliation(s)
- Hojat Sheikh Motahar Vahedi
- Prehospital Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Emergency Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Bagheri
- Department of Emergency Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Jahanshir
- Prehospital Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Emergency Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Seyedhosseini
- Prehospital Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Emergency Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Vahidi
- Prehospital Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Emergency Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Author: Elnaz Vahidi; Department of Emergency Medicine, Shariati Hospital, Tehran, Iran. Tel: +982184902719,
| |
Collapse
|
26
|
Xu X, Liu Q, He S, Zhao J, Wang N, Han X, Guo Y. Qiang-Xin 1 Formula Prevents Sepsis-Induced Apoptosis in Murine Cardiomyocytes by Suppressing Endoplasmic Reticulum- and Mitochondria-Associated Pathways. Front Pharmacol 2018; 9:818. [PMID: 30104976 PMCID: PMC6077999 DOI: 10.3389/fphar.2018.00818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis is reported to be an unusual systemic reaction to infection, accompanied by multiple-organ failure. Sepsis-induced cardiomyopathy (SIC), defined as damages and dysfunction of the heart, is essential in the pathogenesis of sepsis. Traditional Chinese formula, which has long been used to improve the situation of patients through multitarget regulation, is now gradually being used as complementary therapy. The present study aimed to investigate the effect of Qiang-Xin 1 (QX1) formula, a traditional Chinese herbal medicine designed for cardiac dysfunction, on cecal ligation puncture (CLP)-induced heart damage and its underlying mechanisms in mice. Survival test first showed that an oral administration of QX1 formula significantly increased the 7-days survival of septic mice from 22 to 40%. By estimating the secretion of serum cytokines, QX1 treatment dramatically inhibited the excessive production of interleukin-1β and tumor necrosis factor-α. Immunohistochemical staining illustrated that the expression of c-Jun N-terminal kinase, caspase-12, and high-mobility group box 1 was downregulated in cardiomyocytes of the QX1-treated group compared with that of the CLP surgery group. Western blotting confirmed that the activation of essential caspase family members, such as caspase-3, caspase-9, and caspase-12, was prohibited by treatment with QX1. Moreover, the abnormal expression of key regulators of endoplasmic reticulum (ER) and mitochondria-associated apoptosis in cardiomyocytes of septic mice, including CHOP, GRP78, Cyt-c, Bcl-2, Bcl-XL, and Bax, was effectively reversed by treatment with QX1 formula. This study provided a new insight into the role of QX1 formula in heart damage and potential complementary therapeutic effect of traditional Chinese medicine on sepsis.
Collapse
Affiliation(s)
- Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xuyang Han
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
27
|
Li X, Zhu Z, Zhou T, Cao X, Lu T, Liang Y, He J, Liu C, Dou Z, Shen B. Early increases in serum FGF21 levels predict mortality of septic patients. Cytokine 2018; 111:428-433. [PMID: 29861384 DOI: 10.1016/j.cyto.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Potential prognostic biomarkers for patients with sepsis have yet to be identified. The present study evaluated the prognostic value of fibroblast growth factor 21 (FGF21) levels in patients with sepsis. METHODS A total of 120 consecutive Chinese patients with sepsis were prospectively included, and serum levels of FGF21 and biomarkers such as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-10, procalcitonin (PCT), C-reactive protein (CRP), and lactate (LAC) were measured within 24 h after intensive care unit admission. The demographic and clinical characteristics including underlying diseases, Sequential Organ Failure Assessment (△SOFA), and acute physiology and chronic health evaluation II (APACHE II) scores were recorded. Patients were categorized into survival and non-survival groups according to the 28-day mortality. Correlations between FGF21, serum indicators, severity score and 28-day mortality were analyzed, and Cox regression analysis was performed to identify prognostic factors. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cut-off of FGF21 for survival prediction. RESULTS Non-survivors had significantly higher levels of FGF21, IL-6, TNF-α, IL-10, PCT, CRP, and LAC as well as higher SOFA and APACHE II scores compared with the survivors. FGF21 levels were positively correlated with age, waist circumference, levels of IL-6, IL-10, TNF- α, PCT, CRP, and LAC, △SOFA and APACHE II scores. ROC curves showed that FGF21 had a high sensitivity of 81.3% and specificity of 89.8% for predicting 28-day mortality. Patients with a FGF21 levels <3200 pg/ml had a significantly better survival rate than those with levels >3200 pg/ml, and thus, FGF21 was an independent prognostic factor for survival. CONCLUSION FGF21 could serve as a new prognostic biomarker for sepsis survival.
Collapse
Affiliation(s)
- Xing Li
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Zexiang Zhu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China.
| | - Tinghong Zhou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Xiaoyu Cao
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Ting Lu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Yan Liang
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Jiafen He
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Chuankai Liu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Zhoulin Dou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| | - Bin Shen
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR China
| |
Collapse
|