1
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
2
|
Pineau H, Sim VL. From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules 2021; 11:biom11010106. [PMID: 33466947 PMCID: PMC7830147 DOI: 10.3390/biom11010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.
Collapse
Affiliation(s)
- Hailey Pineau
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Valerie L. Sim
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
3
|
Tahir W, Abdulrahman B, Abdelaziz DH, Thapa S, Walia R, Schätzl HM. An astrocyte cell line that differentially propagates murine prions. J Biol Chem 2020; 295:11572-11583. [PMID: 32561641 PMCID: PMC7450132 DOI: 10.1074/jbc.ra120.012596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the pathological isoform PrPSc. Elucidating the molecular and cellular mechanisms underlying prion propagation may help to develop disease interventions. Cell culture systems for prion propagation have greatly advanced molecular insights into prion biology, but translation of in vitro to in vivo findings is often disappointing. A wider range of cell culture systems might help overcome these shortcomings. Here, we describe an immortalized mouse neuronal astrocyte cell line (C8D1A) that can be infected with murine prions. Both PrPC protein and mRNA levels in astrocytes were comparable with those in neuronal and non-neuronal cell lines permitting persistent prion infection. We challenged astrocytes with three mouse-adapted prion strains (22L, RML, and ME7) and cultured them for six passages. Immunoblotting results revealed that the astrocytes propagated 22L prions well over all six passages, whereas ME7 prions did not replicate, and RML prions replicated only very weakly after five passages. Immunofluorescence analysis indicated similar results for PrPSc. Interestingly, when we used prion conversion activity as a readout in real-time quaking-induced conversion assays with RML-infected cell lysates, we observed a strong signal over all six passages, comparable with that for 22L-infected cells. These data indicate that the C8D1A cell line is permissive to prion infection. Moreover, the propagated prions differed in conversion and proteinase K–resistance levels in these astrocytes. We propose that the C8D1A cell line could be used to decipher prion strain biology.
Collapse
Affiliation(s)
- Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Basant Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Dalia H Abdelaziz
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hermann M Schätzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|