1
|
Li J, Yin J, Yan J, Zhang M, Chen R, Li S, Palli SR, Gao Y. Expression and functional analysis of an odorant binding protein PopeOBP16 from Phthorimaea operculella (Zeller). Int J Biol Macromol 2023; 242:124939. [PMID: 37207749 DOI: 10.1016/j.ijbiomac.2023.124939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Odorant binding proteins (OBPs) are essential proteins in the peripheral olfactory system, responsible for odorant recognition and transport to olfactory receptors. Phthorimaea operculella (potato tuber moth) is an important oligophagous pest on Solanaceae crops in many countries and regions. PopeOBP16 is one of the OBPs in potato tuber moth. This study examined the expression profiles of PopeOBP16. The results of qPCR indicated that PopeOBP16 was highly expressed in the antennae of adults, especially in males, suggesting that it may be involved in odor recognition in adults. The electroantennogram (EAG) was used to screen candidate compounds with the antennae of P. operculella. The relative affinities of PopeOBP16 to 27 host volatiles and two sex pheromone components with the highest relative EAG responses were examined with competitive fluorescence-based binding assays. PopeOBP16 had the strongest binding affinity with the plant volatiles: nerol, 2-phenylethanol, linalool, 1,8-cineole, benzaldehyde, β-pinene, d-limonene, terpinolene, α-terpinene, and the sex pheromone component trans-4, cis-7, cis-10-tridecatrien-1-ol acetate. The results provide a foundation for further research into the functioning of the olfactory system and the potential development of green chemistry for control of the potato tuber moth.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Suhua Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
2
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Vyas M, Pagadala Damodaram KJ, Krishnarao G. Antennal Transcriptome of the Fruit-Sucking Moth Eudocima materna: Identification of Olfactory Genes and Preliminary Evidence for RNA-Editing Events in Odorant Receptors. Genes (Basel) 2022; 13:genes13071207. [PMID: 35885990 PMCID: PMC9323814 DOI: 10.3390/genes13071207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Unappealing shriveled fruits are a characteristic of one of the most elusive fruit pests. The perpetrator, Eudocima materna, attacks the fruit at a fully formed stage and, therefore, the antennal transcriptome for this insect was deduced to identify the molecular elicitors involved in the attraction to its host plants. A total of 260 olfactory genes, including 16 odorant-binding proteins (OBPs), four pheromone-binding proteins (PBPs), 40 antennal-binding proteins (ABPs), 178 odorant receptors (ORs), 17 chemosensory proteins (CSPs) and five sensory neuron membrane proteins (SNMPs) were identified. Phylogenetic analysis shows the divergence of E. materna proteins from closely related lepidopterans and provides insights on genes that have exclusively evolved in this insect. STRING network analysis revealed interactions of olfactory proteins among themselves and the proteins of other groups. Interestingly, online tools predicted RNA-editing events in the odorant receptor sequences, suggesting the possibility of multiple protein forms. Transcripts matching transposable element sequences were also detected in the dataset. Thus, the work reported here provides a valuable resource to design molecular methods for pest control.
Collapse
|
4
|
Hu J, Wang XY, Tan LS, Lu W, Zheng XL. Identification of Chemosensory Genes, Including Candidate Pheromone Receptors, in Phauda flammans (Walker) (Lepidoptera: Phaudidae) Through Transcriptomic Analyses. Front Physiol 2022; 13:907694. [PMID: 35846004 PMCID: PMC9283972 DOI: 10.3389/fphys.2022.907694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.
Collapse
|
5
|
Gao S, Lu R, Zhang Y, Sun H, Li S, Zhang K, Li R. Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104968. [PMID: 34802518 DOI: 10.1016/j.pestbp.2021.104968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum (T. castaneum) is a worldwide pest of stored grain that mainly harms flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. However, the mechanism of OBPs in insect defense against exogenous toxic substances is still unclear. In this study, biochemical analysis showed that eugenol, the active component of A. vulgaris essential oil, significantly induced the expression of the OBP gene OBPC12 from T. castaneum (TcOBPC12). The mortality of late larvae treated with eugenol was higher than that of the control group after RNA interference (RNAi) against TcOBPC12, which indicates that the OBP gene is involved in the eugenol defense mechanism and leads to a decrease in sensitivity to eugenol. Tissue expression profiling showed that the expression of TcOBPC12 in the epidermis, hemolymph, and intestine was higher than in other larval tissues, and TcOBPC12 was expressed mainly in the epidermis, head, and fat body of adults. The developmental expression profile showed that the expression of TcOBPC12 in late eggs, early and late larval stages, and late adult stages was higher than in other developmental stages. These data suggest that TcOBPC12 may be involved in the absorption of exogenous toxic substances by the larvae from T. castaneum. Our results provide a theoretical basis for the metabolism and degradation mechanism of exogenous toxic substances and help explore more potential target genes of insect pests.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| |
Collapse
|
6
|
Wang ZQ, Wu C, Li GC, Nuo SM, Yin NN, Liu NY. Transcriptome Analysis and Characterization of Chemosensory Genes in the Forest Pest, Dioryctria abietella (Lepidoptera: Pyralidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Lepidoptera, RNA sequencing has become a useful tool in identifying chemosensory genes from antennal transcriptomes, but little attention is paid to non-antennal tissues. Though the antennae are primarily responsible for olfaction, studies have found that a certain number of chemosensory genes are exclusively or highly expressed in the non-antennal tissues, such as proboscises, legs and abdomens. In this study, we report a global transcriptome of 16 tissues from Dioryctria abietella, including chemosensory and non-chemosensory tissues. Through Illumina sequencing, totally 952,658,466 clean reads were generated, summing to 142.90 gigabases of data. Based on the transcriptome, 235 chemosensory-related genes were identified, comprising 42 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs), 75 odorant receptors (ORs), 62 gustatory receptors (GRs), 30 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). Compared to a previous study in this species, 140 novel genes were found. A transcriptome-wide analysis combined with PCR results revealed that except for GRs, the majority of other five chemosensory gene families in Lepidoptera were expressed in the antennae, including 160 chemosensory genes in D. abietella. Using phylogenetic and expression profiling analyses, members of the six chemosensory gene repertoires were characterized, in which 11 DabiORs were candidates for detecting female sex pheromones in D. abietella, and DabiOR23 may be involved in the sensing of plant-derived phenylacetaldehyde. Intriguingly, more than half of the genes were detected in the proboscises, and one fourth of the genes were found to have the expression in the legs. Our study not only greatly extends and improves the description of chemosensory genes in D. abietella, but also identifies potential molecular targets involved in olfaction, gustation and non-chemosensory functions for control of this pest.
Collapse
|
7
|
Identification and comparative expression analysis of odorant-binding proteins in the reproductive system and antennae of Athetis dissimilis. Sci Rep 2021; 11:13941. [PMID: 34230568 PMCID: PMC8260659 DOI: 10.1038/s41598-021-93423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
Odorant-binding proteins (OBPs) are prevalent in the antennal transcriptomes of different orders of insects. Studies on OBPs have focused on their role in the insect chemosensory system, but knowledge of their functions in the insect testis is limited. We sequenced the transcriptomes of the Athetis dissimilis reproductive organs and analyzed the expression of AdisOBP genes in different tissues. We identified 23 OBPs in the testis and ovaries and 31 OBPs in antennal transcriptomes. The results of real-time quantitative PCR revealed that 23 of the 54 OBP genes were highly expressed in both female and male antennae, including three that exhibited male-biased expression and 15 that exhibited female-biased expression. A total of 24 OBPs were highly expressed in the testis of A. dissimilis, while expression of OBPs in the ovaries was very low. These findings highlight the functional diversity of OBPs in insects and can facilitate further studies on the OBPs in A. dissimilis and lepidopteran species.
Collapse
|
8
|
Identification and expression profiling of chemosensory membrane protein genes in Achelura yunnanensis (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100876. [PMID: 34246924 DOI: 10.1016/j.cbd.2021.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.
Collapse
|
9
|
Gonzalez F, Borrero‐Echeverry F, Jósvai JK, Strandh M, Unelius CR, Tóth M, Witzgall P, Bengtsson M, Walker WB. Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecol Evol 2020; 10:7334-7348. [PMID: 32760532 PMCID: PMC7391548 DOI: 10.1002/ece3.6458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
Collapse
Affiliation(s)
- Francisco Gonzalez
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- ChemTica InternacionalHerediaCosta Rica
| | - Felipe Borrero‐Echeverry
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Corporación Colombiana de Investgación AgropecuariaAgrosaviaMosqueraColombia
| | | | - Maria Strandh
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Molecular Ecology and Evolution LabDepartment of BiologyLund UniversityLundSweden
| | | | - Miklós Tóth
- Plant Protection Institute CARBudapestHungary
| | - Peter Witzgall
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - William B. Walker
- Department to Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
| |
Collapse
|
10
|
Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100654. [PMID: 31954363 DOI: 10.1016/j.cbd.2020.100654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Histia rhodope Cramer (Lepidoptera: Zygaenidae) is one of the most destructive defoliators of landscape tree Bischofia polycarpa (Levl.) Airy Shaw in China stretching to other Southeast Asia regions. Olfactory genes, encoding proteins such as odorant carrier proteins believed to initiate olfactory signal transduction in insects, have been acknowledged to be novel targets for pest control. In this study, we established antennal transcriptome of H. rhodope and ultimately identified 19 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs) and 4 Niemann-Pick type C2 proteins (NPC2s). The 19 OBPs, 6 CSPs and 4 NPC2s were assessed to validate the differential expressions between sexes, and between olfactory and non-olfactory tissues. 8 OBPs and 2 CSPs exhibited male-biased antennae expression, while 6 OBPs, 2 CSPs and HrhoNPC2a exhibited female-biased antennae expression. Moreover, 17 OBPs, 4 CSPs and 2 NPC2s were predominantly expressed in the antennae compared with non-olfactory tissues. HrhoOBP1 and HrhoOBP8 were predominantly expressed in the antennae and heads, HrhoCSP8 and HrhoCSP14 were highly expressed in abdomens and legs, HrhoNPC2c was highly expressed in abdomens, while HrhoNPC2d was expressed in all tissues. Phylogenetic analysis revealed that most H. rhodope proteins were closely related to proteins from other moths. Moreover, compared with other nocturnal moths, acting as a diurnal moth, we found that H. rhodope may have lost a PBP gene. Our results provide important molecular information for further studies on olfactory mechanisms of H. rhodope.
Collapse
|
11
|
Yang Y, Li W, Tao J, Zong S. Antennal transcriptome analyses and olfactory protein identification in an important wood-boring moth pest, Streltzoviella insularis (Lepidoptera: Cossidae). Sci Rep 2019; 9:17951. [PMID: 31784624 PMCID: PMC6884542 DOI: 10.1038/s41598-019-54455-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Olfaction plays key roles in insect survival and reproduction, such as feeding, courtship, mating, and oviposition. The olfactory-based control strategies have been developed an important means for pest management. Streltzoviella insularis is a destructive insect pest of many street tree species, and characterization of its olfactory proteins could provide targets for the disruption of their odour recognition processes and for urban forestry protection. In this study, we assembled the antennal transcriptome of S. insularis by next-generation sequencing and annotated the main olfactory multi-gene families, including 28 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 56 odorant receptors (ORs), 11 ionotropic receptors (IRs), two sensory neuron membrane proteins (SNMPs), and 101 odorant-degrading enzymes (ODEs). Sequence and phylogenetic analyses confirmed the characteristics of these proteins. We further detected tissue- and sex-specific expression patterns of OBPs, CSPs and SNMPs by quantitative real time-PCR. Most OBPs were highly and differentially expressed in the antennae of both sexes. SinsCSP10 was expressed more highly in male antennae than in other tissues. Two SNMPs were highly expressed in the antennae, with no significant difference in expression between the sexes. Our results lay a solid foundation for understanding the precise molecular mechanisms underlying S. insularis odour recognition.
Collapse
Affiliation(s)
- Yuchao Yang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Wenbo Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Cheng J, Wang CY, Lyu ZH, Chen JX, Tang LP, Lin T. Candidate olfactory genes identified in Heortia vitessoides (Lepidoptera: Crambidae) by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:117-130. [PMID: 30465940 DOI: 10.1016/j.cbd.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Heortia vitessoides Moore is the most severe defoliating pest of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae) forests. Olfaction in insects is essential for host identification, mating, and oviposition, in which olfactory proteins, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs), are responsible for chemical signaling. Here, we determined the transcriptomes of male and female adult antennae of H. vitessoides. We assembled 52,383 unigenes and annotated their putative gene functions based on the gene ontology (GO), eukaryotic ortholog groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Overall, 61 olfactory-related transcripts, including nine OBPs, 10 CSPs, 28 ORs, 12 IRs, and two SNMPs, were identified. Expression patterns of OBPs and CSPs in the female antennae, male antennae, and legs were performed using reverse transcription quantitative PCR (RT-qPCR). The results revealed that HvitOBP1, HvitOBP6, and HvitGOBP1 were enriched in the female antennae, while HvitOBP2, HvitOBP3, HvitOBP5, HvitGOBP2, and HvitPBP1 were enriched in the male antennae. HvitOBP4 was expressed at nearly the same level in the antennae of both males and females. Four CSPs (HvitCSP3, HvitCSP5, HvitCSP7, and HvitCSP10) and two CSPs (HvitCSP1 and HvitCSP4) were expressed at higher levels in the female and male antennae, respectively. HvitCSP6 was expressed at higher levels both in the female antennae and legs. Three CSP genes (HvitCSP2, HvitCSP8, and HvitCSP9) were expressed at higher levels in the legs. These results provide a basis for further studies on the molecular olfactory mechanisms of H. vitessoides.
Collapse
Affiliation(s)
- Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China
| | - Chun-Yan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China
| | - Zi-Hao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China
| | - Jing-Xiang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China
| | - Li-Pin Tang
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
13
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Jia X, Zhang X, Liu H, Wang R, Zhang T. Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella. PLoS One 2018; 13:e0189889. [PMID: 29304134 PMCID: PMC5755773 DOI: 10.1371/journal.pone.0189889] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Olfaction plays an indispensable role in mediating insect behavior, such as locating host plants, mating partners, and avoidance of toxins and predators. Olfactory-related proteins are required for olfactory perception of insects. However, very few olfactory-related genes have been reported in Plodia interpunctella up to now. In the present study, we sequenced the antennae transcriptome of P. interpunctella using the next-generation sequencing technology, and identified 117 candidate olfactory-related genes, including 29 odorant-binding proteins (OBPs), 15 chemosensory proteins (CSPs), three sensory neuron membrane proteins (SNMPs), 47 odorant receptors (ORs), 14 ionotropic receptors (IRs) and nine gustatory receptors (GRs). Further analysis of qRT-PCR revealed that nine OBPs, three CSPs, two SNMPs, nine ORs and two GRs were specifically expressed in the male antennae, whereas eight OBPs, six CSPs, one SNMP, 16 ORs, two GRs and seven IRs significantly expressed in the female antennae. Taken together, our results provided useful information for further functional studies on insect genes related to recognition of pheromone and odorant, which might be meaningful targets for pest management.
Collapse
Affiliation(s)
- Xiaojian Jia
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Hongmin Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, P. R. China
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, P. R. China
| |
Collapse
|