1
|
González LA, Carvalho JGS, Kuinchtner BC, Dona AC, Baruselli PS, D'Occhio MJ. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves. Sci Rep 2023; 13:8176. [PMID: 37210395 DOI: 10.1038/s41598-023-35383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
1H NMR-based metabolomics was used to study the effect of abrupt weaning on the blood metabolome of beef calves. Twenty Angus calves (258 ± 5 kg BW; 5 to 6 months old) were randomly assigned to a non-weaned (NW) group that remained grazing with their dam or a weaned (W) group that underwent abrupt separation from their dam to a separate paddock on d 0 of the study. Body weight, behaviour, and blood samples for cortisol and metabolomics were measured at d 0, 1, 2, 7, and 14 of the study. On d 1 and 2, W calves spent less time grazing and ruminating, and more time vocalising and walking, had a greater concentration of cortisol, NEFA, 3-hydroxybutyrate, betaine, creatine, and phenylalanine, and lesser abundance of tyrosine (P < 0.05) compared to NW calves. Compared to NW calves at d 14, W calves had greater (P < 0.01) relative abundance of acetate, glucose, allantoin, creatinine, creatine, creatine phosphate, glutamate, 3-hydroxybutyrate, 3-hydroxyisobutyrate, and seven AA (alanine, glutamate, leucine, lysine, phenylalanine, threonine and valine) but lesser (P < 0.05) relative abundance of low density and very low-density lipids, and unsaturated lipids. Both PCA and OPLS-DA showed no clustering or discrimination between groups at d 0 and increasing divergence to d 14. Blood metabolomics is a useful tool to quantify the acute effects of stress in calves during the first 2 days after abrupt weaning, and longer-term changes in carbohydrate, lipid and protein metabolism due to nutritional changes from cessation of milk intake and greater reliance on forage intake.
Collapse
Affiliation(s)
- Luciano A González
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.
| | - Julia G S Carvalho
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno C Kuinchtner
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Natural Pasture Ecology Laboratory (LEPAN), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Anthony C Dona
- Kolling Institute of Medical Research, Northern Medical School, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Pietro S Baruselli
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michael J D'Occhio
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
2
|
Ma F, Song Y, Sun M, Wang A, Jiang S, Mu G, Tuo Y. Exopolysaccharide Produced by Lactiplantibacillus plantarum-12 Alleviates Intestinal Inflammation and Colon Cancer Symptoms by Modulating the Gut Microbiome and Metabolites of C57BL/6 Mice Treated by Azoxymethane/Dextran Sulfate Sodium Salt. Foods 2021; 10:3060. [PMID: 34945611 PMCID: PMC8701795 DOI: 10.3390/foods10123060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Exopolysaccharide produced by Lactiplantibacillus plantarum-12 (LPEPS) exhibited the anti-proliferating effect on human colon cancer cell line HT-29 in vitro. The purpose of the study was to determine the alleviating effects of LPEPS on colon cancer development of the C57BL/6 mice treated by azoxymethane/dextran sulfate sodium salt (AOM/DSS). The C57BL/6 mice treated by AOM/DSS were orally administered LPEPS daily for 85 days. The results showed that LPEPS oral administration enhanced colon tight-junction protein expression and ameliorated colon shortening and tumor burden of the AOM/DSS treated mice. Furthermore, LPEPS oral administration significantly reduced pro-inflammatory factors TNF-α, IL-8, and IL-1β levels and increased anti-inflammatory factor IL-10 level in the serum of the AOM/DSS-treated mice. LPEPS oral administration reversed the alterations of gut flora in AOM/DSS-treated mice, as evidenced by the increasing of the abundance of Bacteroidetes, Bacteroidetes/Firmicutes ratio, Muribaculaceae, Burkholderiaceae, and norank_o__Rhodospirillales and the decreasing of the abundance of Firmicutes, Desulfovibrionaceae, Erysipelotrichaceae, and Helicobacteraceae. The fecal metabolites of the AOM/DSS-treated mice were altered by LPEPS oral administration, involving lipid metabolism and amino acid metabolism. Together, these results suggested that LPEPS oral administration alleviated AOM/DSS-induced colon cancer symptoms of the C57BL/6 mice by modulating gut microbiota and metabolites, enhancing intestine barrier, inhibiting NF-κB pathway, and activating caspase cascade.
Collapse
Affiliation(s)
- Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Analytical Platforms for Mass Spectrometry-Based Metabolomics of Polar and Ionizable Metabolites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:215-242. [PMID: 34628634 DOI: 10.1007/978-3-030-77252-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metabolomics studies rely on the availability of suitable analytical platforms to determine a vast collection of chemically diverse metabolites in complex biospecimens. Liquid chromatography-mass spectrometry operated under reversed-phase conditions is the most commonly used platform in metabolomics, which offers extensive coverage for nonpolar and moderately polar compounds. However, complementary techniques are required to obtain adequate separation of polar and ionic metabolites, which are involved in several fundamental metabolic pathways. This chapter focuses on the main mass-spectrometry-based analytical platforms used to determine polar and/or ionizable compounds in metabolomics (GC-MS, HILIC-MS, CE-MS, IPC-MS, and IC-MS). Rather than comprehensively describing recent applications related to GC-MS, HILIC-MS, and CE-MS, which have been covered in a regular basis in the literature, a brief discussion focused on basic principles, main strengths, limitations, as well as future trends is presented in this chapter, and only key applications with the purpose of illustrating important analytical aspects of each platform are highlighted. On the other hand, due to the relative novelty of IPC-MS and IC-MS in the metabolomics field, a thorough compilation of applications for these two techniques is presented here.
Collapse
|
4
|
Bäßler SC, Kenéz Á, Scheu T, Koch C, Meyer U, Dänicke S, Huber K. Association between alterations in plasma metabolome profiles and laminitis in intensively finished Holstein bulls in a randomized controlled study. Sci Rep 2021; 11:12735. [PMID: 34140596 PMCID: PMC8211646 DOI: 10.1038/s41598-021-92163-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Metabolic consequences of an energy and protein rich diet can compromise metabolic health of cattle by promoting a pro-inflammatory phenotype. Laminitis is a common clinical sign, but affected metabolic pathways, underlying pathophysiology and causative relationships of a systemic pro-inflammatory phenotype are unclear. Therefore, the aim of this study was to elucidate changes in metabolome profiles of 20 months old Holstein bulls fed a high energy and protein diet and to identify novel metabolites and affected pathways, associated with diet-related laminitis. In a randomized controlled feeding trial using bulls fed a high energy and protein diet (HEP; metabolizable energy [ME] intake 169.0 ± 1.4 MJ/day; crude protein [CP] intake 2.3 ± 0.02 kg/day; calculated means ± SEM; n = 15) versus a low energy and protein diet (LEP; ME intake 92.9 ± 1.3 MJ/day; CP intake 1.0 ± 0.01 kg/day; n = 15), wide ranging effects of HEP diet on metabolism were demonstrated with a targeted metabolomics approach using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Multivariate statistics revealed that lower concentrations of phosphatidylcholines and sphingomyelins and higher concentrations of lyso-phosphatidylcholines, branched chain amino acids and aromatic amino acids were associated with an inflammatory state of diet-related laminitis in Holstein bulls fed a HEP diet. The latter two metabolites share similarities with changes in metabolism of obese humans, indicating a conserved pathophysiological role. The observed alterations in the metabolome provide further explanation on the underlying metabolic consequences of excessive dietary nutrient intake.
Collapse
Affiliation(s)
- Sonja Christiane Bäßler
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ákos Kenéz
- grid.35030.350000 0004 1792 6846Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, SAR China
| | - Theresa Scheu
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler a.d. Alsenz, Germany
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler a.d. Alsenz, Germany
| | - Ulrich Meyer
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Peng W, Huang J, Yang J, Zhang Z, Yu R, Fayyaz S, Zhang S, Qin YH. Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Front Microbiol 2020; 10:3141. [PMID: 32038574 PMCID: PMC6984327 DOI: 10.3389/fmicb.2019.03141] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent endocrine diseases in the world. Recent studies have shown that dysbiosis of the gut microbiota may be an important contributor to T2DM pathogenesis. However, the mechanisms underlying the roles of the gut microbiome and fecal metabolome in T2DM have not been characterized. Recently, the Goto-Kakizaki (GK) rat model of T2DM was developed to study the clinical symptoms and characteristics of human T2DM. To further characterize T2DM pathogenesis, we combined multi-omics techniques, including 16S rRNA gene sequencing, metagenomic sequencing, and metabolomics, to analyze gut microbial compositions and functions, and further characterize fecal metabolomic profiles in GK rats. Our results showed that gut microbial compositions were significantly altered in GK rats, as evidenced by reduced microbial diversity, altered microbial taxa distribution, and alterations in the interaction network of the gut microbiome. Functional analysis based on the cluster of orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations suggested that 5 functional COG categories belonged to the metabolism cluster and 33 KEGG pathways related to metabolic pathways were significantly enriched in GK rats. Metabolomics profiling identified 53 significantly differentially abundant metabolites in GK rats, including lipids and lipid-like molecules. These lipids were enriched in the glycerophospholipid metabolic pathway. Moreover, functional correlation analysis showed that some altered gut microbiota families, such as Verrucomicrobiaceae and Bacteroidaceae, significantly correlated with alterations in fecal metabolites. Collectively, the results suggested that an altered gut microbiota is associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, China
| | - Jingjing Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Yu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, China
| | - Sharmeen Fayyaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shuihan Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Xu J, Jiang ZH, Liu XB, Ma Y, Ma W, Ma L. Ultra-performance liquid chromatography-mass spectrometry-based metabolomics reveals Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes. RSC Adv 2019; 9:39858-39870. [PMID: 35541427 PMCID: PMC9076227 DOI: 10.1039/c9ra09386a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background: As a typical chronic metabolic disease, type 2 diabetes mellitus causes a heavy health-care burden to society. In this study, we applied the metabolomics strategy to explore the potential molecular mechanism of the Huangqiliuyi decoction (HQLYD) for type-2 diabetes (T2D). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) combined with pattern recognition methods was utilized to select specific metabolites closely associated with HQLYD. Biomarker pathway analysis and biological network were utilized to uncover the therapeutic effect and action mechanism related to HQLYD. A total of twenty-five biomarkers were identified in the animal model, in which sixteen biomarkers are associated with HQLYD treatment for T2D. They attenuated the abnormalities of metabolic pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and the citrate cycle. HQLYD also significantly elevated the serum FINS and SOD, GSP-x level in the liver and kidney, and reduced the serum TC, TG, HDL, LDL, urea, Scr, AST, ALT, FBG, IRS, MDA, and CAT level. We found that the therapeutic mechanism of HQLYD against T2D affected amino acid metabolism, glucose metabolism and lipid metabolism. Metabolomics revealed that the Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes.
Collapse
Affiliation(s)
- Jiao Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Zhe-Hui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| | - Xiu-Bo Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Yan Ma
- School of Business Administration, Harbin University of Commerce Harbin 150040 China
| | - Wei Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Ling Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| |
Collapse
|
7
|
D’Occhio MJ, Baruselli PS, Campanile G. Metabolic health, the metabolome and reproduction in female cattle: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1600385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michael J. D’Occhio
- School of Life and Environmental Sciences, The University of Sydney, Camden, Australia
| | - Pietro S. Baruselli
- Departamento de Reproducao Animal (VRA), University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Campanile
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Naples Federico II, Napoli, Italy
| |
Collapse
|