1
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Kumari M, Pradhan UK, Joshi R, Punia A, Shankar R, Kumar R. In-depth assembly of organ and development dissected Picrorhiza kurroa proteome map using mass spectrometry. BMC PLANT BIOLOGY 2021; 21:604. [PMID: 34937558 PMCID: PMC8693493 DOI: 10.1186/s12870-021-03394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Picrorhiza kurroa Royle ex Benth. being a rich source of phytochemicals, is a promising high altitude medicinal herb of Himalaya. The medicinal potential is attributed to picrosides i.e. iridoid glycosides, which synthesized in organ-specific manner through highly complex pathways. Here, we present a large-scale proteome reference map of P. kurroa, consisting of four morphologically differentiated organs and two developmental stages. RESULTS We were able to identify 5186 protein accessions (FDR < 1%) providing a deep coverage of protein abundance array, spanning around six orders of magnitude. Most of the identified proteins are associated with metabolic processes, response to abiotic stimuli and cellular processes. Organ specific sub-proteomes highlights organ specialized functions that would offer insights to explore tissue profile for specific protein classes. With reference to P. kurroa development, vegetative phase is enriched with growth related processes, however generative phase harvests more energy in secondary metabolic pathways. Furthermore, stress-responsive proteins, RNA binding proteins (RBPs) and post-translational modifications (PTMs), particularly phosphorylation and ADP-ribosylation play an important role in P. kurroa adaptation to alpine environment. The proteins involved in the synthesis of secondary metabolites are well represented in P. kurroa proteome. The phytochemical analysis revealed that marker compounds were highly accumulated in rhizome and overall, during the late stage of development. CONCLUSIONS This report represents first extensive proteomic description of organ and developmental dissected P. kurroa, providing a platform for future studies related to stress tolerance and medical applications.
Collapse
Affiliation(s)
- Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Kumar Pradhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-IHBT, Palampur, HP, 176061, India
- Present address: ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, Delhi, 110012, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Punia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-IHBT, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Jung WJ, Lee YJ, Kang CS, Seo YW. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. BMC PLANT BIOLOGY 2021; 21:418. [PMID: 34517837 PMCID: PMC8436466 DOI: 10.1186/s12870-021-03180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.
Collapse
Affiliation(s)
- Woo Joo Jung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Yong Jin Lee
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
- Department of Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Bineau E, Diouf I, Carretero Y, Duboscq R, Bitton F, Djari A, Zouine M, Causse M. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1213-1227. [PMID: 34160103 DOI: 10.1111/tpj.15379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 05/15/2023]
Abstract
Tomato is a widely cultivated crop, which can grow in many environments. However, temperature above 30°C impairs its reproduction, subsequently impacting fruit yield. We assessed the impact of high-temperature stress (HS) in two tomato experimental populations, a multi-parental advanced generation intercross (MAGIC) population and a core-collection (CC) of small-fruited tomato accessions. Both populations were evaluated for 11 traits related to yield components, phenology and fruit quality in optimal and HS conditions. HS significantly impacted all traits in both populations, but a few genotypes with stable yield under HS were identified. A plasticity index was computed for each individual to measure the extent of the heat impact for each trait. Quantitative trait loci (QTL) were detected in control and HS conditions as well as for plasticity index. Linkage and genome-wide association analyses in the MAGIC and CC populations identified a total of 98 and 166 QTLs, respectively. Taking the two populations together, 69 plasticity QTLs (pQTLs) were involved in tomato heat response for 11 traits. The transcriptome changes in the ovary of six genotypes with contrasted responses to HS were studied, and 837 genes differentially expressed according to the conditions were detected. Combined with previous transcriptome studies, these results were used to propose candidate genes for HS response QTLs.
Collapse
Affiliation(s)
- Estelle Bineau
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
- GAUTIER Semences, route d'Avignon, Eyragues, 13630, France
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Yolande Carretero
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| | - Anis Djari
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mohamed Zouine
- Laboratory of Genomics and Biotechnology of Fruit, University of Toulouse, INPT, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRAE, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, Domaine Saint Maurice, 67 Allée des Chênes, CS60094, Montfavet, 84143, France
| |
Collapse
|
5
|
Lara-Mondragón CM, MacAlister CA. Arabinogalactan glycoprotein dynamics during the progamic phase in the tomato pistil. PLANT REPRODUCTION 2021; 34:131-148. [PMID: 33860833 DOI: 10.1007/s00497-021-00408-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pistil AGPs display dynamic localization patterns in response to fertilization in tomato. SlyFLA9 (Solyc07g065540.1) is a chimeric Fasciclin-like AGP with enriched expression in the ovary, suggesting a potential function during pollen-pistil interaction. During fertilization, the male gametes are delivered by pollen tubes to receptive ovules, deeply embedded in the sporophytic tissues of the pistil. Arabinogalactan glycoproteins (AGPs) are a diverse family of highly glycosylated, secreted proteins which have been widely implicated in plant reproduction, particularly within the pistil. Though tomato (Solanum lycopersicum) is an important crop requiring successful fertilization for production, the molecular basis of this event remains understudied. Here we explore the spatiotemporal localization of AGPs in the mature tomato pistil before and after fertilization. Using histological techniques to detect AGP sugar moieties, we found that accumulation of AGPs correlated with the maturation of the stigma and we identified an AGP subpopulation restricted to the micropyle that was no longer visible upon fertilization. To identify candidate pistil AGP genes, we used an RNA-sequencing approach to catalog gene expression in functionally distinct subsections of the mature tomato pistil (the stigma, apical and basal style and ovary) as well as pollen and pollen tubes. Of 161 predicted AGP and AGP-like proteins encoded in the tomato genome, we identified four genes with specifically enriched expression in reproductive tissues. We further validated expression of two of these, a Fasciclin-like AGP (SlyFLA9, Solyc07g065540.1) and a novel hybrid AGP (SlyHAE, Solyc09g075580.1). Using in situ hybridization, we also found SlyFLA9 was expressed in the integuments of the ovule and the pericarp. Additionally, differential expression analyses of the pistil transcriptome revealed previously unreported genes with enriched expression in each subsection of the mature pistil, setting the foundation for future functional studies.
Collapse
Affiliation(s)
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Takei H, Shinozaki Y, Yano R, Kashojiya S, Hernould M, Chevalier C, Ezura H, Ariizumi T. Corrigendum: Loss-of-Function of a Tomato Receptor-Like Kinase Impairs Male Fertility and Induces Parthenocarpic Fruit Set. FRONTIERS IN PLANT SCIENCE 2021; 12:672086. [PMID: 33995466 PMCID: PMC8115910 DOI: 10.3389/fpls.2021.672086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
[This corrects the article DOI: 10.3389/fpls.2019.00403.].
Collapse
Affiliation(s)
- Hitomi Takei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Yoshihito Shinozaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Ryoichi Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sachiko Kashojiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michel Hernould
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d'Ornon, France
- UMR1332 BFP, University of Bordeaux, Bordeaux, France
| | - Christian Chevalier
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d'Ornon, France
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Wu M, Haak DC, Anderson GJ, Hahn MW, Moyle LC, Guerrero RF. Inferring the Genetic Basis of Sex Determination from the Genome of a Dioecious Nightshade. Mol Biol Evol 2021; 38:2946-2957. [PMID: 33769517 PMCID: PMC8233512 DOI: 10.1093/molbev/msab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dissecting the genetic mechanisms underlying dioecy (i.e., separate female and male individuals) is critical for understanding the evolution of this pervasive reproductive strategy. Nonetheless, the genetic basis of sex determination remains unclear in many cases, especially in systems where dioecy has arisen recently. Within the economically important plant genus Solanum (∼2,000 species), dioecy is thought to have evolved independently at least 4 times across roughly 20 species. Here, we generate the first genome sequence of a dioecious Solanum and use it to ascertain the genetic basis of sex determination in this species. We de novo assembled and annotated the genome of Solanum appendiculatum (assembly size: ∼750 Mb scaffold N50: 0.92 Mb; ∼35,000 genes), identified sex-specific sequences and their locations in the genome, and inferred that males in this species are the heterogametic sex. We also analyzed gene expression patterns in floral tissues of males and females, finding approximately 100 genes that are differentially expressed between the sexes. These analyses, together with observed patterns of gene-family evolution specific to S. appendiculatum, consistently implicate a suite of genes from the regulatory network controlling pectin degradation and modification in the expression of sex. Furthermore, the genome of a species with a relatively young sex-determination system provides the foundational resources for future studies on the independent evolution of dioecy in this clade.
Collapse
Affiliation(s)
- Meng Wu
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Gregory J Anderson
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Rafael F Guerrero
- Department of Computer Science, Indiana University, Bloomington, IN, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Phukela B, Geeta R, Das S, Tandon R. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family. Mol Genet Genomics 2020; 295:563-577. [PMID: 31912236 DOI: 10.1007/s00438-019-01641-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023]
Abstract
CRABS CLAW (CRC), a member of YABBY transcription factor family, has been previously reported to be principally involved in carpel development across angiosperms, and nectary development in core eudicots. Most of the studies suggest that CRC exists as a single copy gene, except in the Solanaceae where CRC occurs as paralogous pairs-CRCa-CRCb in Solanum lycopersicum, and CRC1-CRC2 in Petunia hybrida. In spite of their crucial role in carpel and nectary development, there is no information about the evolutionary history of the CRC paralogy in Solanaceae and whether the paralogy extends beyond Solanaceae. We analyzed homologues of CRC across angiosperms including genome sequence of fourteen species of Solanaceae available at Sol Genomics Network database, Phytozome and NCBI, to address the questions. Our phylogenetic reconstruction across angiosperms combined with comparative genomic, microsynteny and genome-fractionation analyses across the Solanaceae genomes revealed that (1) the CRCa-CRCb lineage is represented by a single copy in other flowering plants; (2) putative homologues of CRCa and CRCb are present in all the Solanaceae genomes studied; (3) the CRCa-CRCb paralogy in Solanaceae is associated with a large segmental duplication within Solanaceae (perhaps in its common ancestor), and (4) the duplicated segments have undergone different degrees of retention and loss of genes. Also, the CRC gene lineage expanded in Solanaceae following Solanaceae-α hexaploidy event and that two CRC duplicate copies were subsequently retained during the course of evolution. Besides the first detailed description of CRC evolution in Solanaceae, the study identifies potential candidate genes for future functional investigations.
Collapse
Affiliation(s)
- Banisha Phukela
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
9
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|
10
|
Kim JS, Ezura K, Lee J, Ariizumi T, Ezura H. Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knockdown by novel tissue-specific promoters. Sci Rep 2019; 9:18871. [PMID: 31827210 PMCID: PMC6906307 DOI: 10.1038/s41598-019-55400-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
Parthenocarpy is the development of an ovary into a seedless fruit without pollination. The ubiquitous downregulation of SlIAA9 induces not only parthenocarpic fruit formation but also an abnormal vegetative phenotype. To make parthenocarpic transgenic tomato plants without unwanted phenotypes, we found two genes, namely, Solyc03g007780 and Solyc02g067760, expressed in ovary tissue but not in vegetative tissues. Solyc03g007780 was expressed in developing ovaries and anthers. Solyc02g067760 mRNA was detected in whole-flower tissues. The promoters of Solyc03g007780 (Psol80) and Solyc02g067760 (Psol60) predominantly induced the expression of genes in the ovule, placenta, endocarp and pollen and in whole-flower tissues, respectively. Psol80/60-SlIAA9i lines, created for SlIAA9-RNA interference controlled by two promoters, successfully formed parthenocarpic fruits without pleiotropic effects in vegetative tissues. Downregulation of SlIAA9, responsible for parthenocarpic fruit formation, was observed in ovules rather than ovaries in the Psol80/60-SlIAA9i lines. Although the weight of parthenocarpic fruits of the Psol80/60-SlIAA9i lines was lower than the weight of pollinated fruits of the wild type (WT), the parthenocarpic fruits presented redder and more saturated colors and higher levels of total soluble solids and titratable acidity than the WT fruits.
Collapse
Affiliation(s)
- Ji-Seong Kim
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8572, Japan
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8572, Japan
| | - Jeongeun Lee
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8572, Japan.,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8572, Japan. .,Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
11
|
Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.). Sci Rep 2019; 9:16943. [PMID: 31729411 PMCID: PMC6858371 DOI: 10.1038/s41598-019-52948-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Abscisic acid (ABA) is an important regulator of many plant developmental processes, although its regulation in the pistil during anthesis is unclear. We investigated the role of 9-cis-epoxycarotenoid dioxygenase (SlNCED1), a key ABA biosynthesis enzyme, through overexpression and transcriptome analysis in the tomato pistil. During pistil development, ABA accumulates and SlNCED1 expression increases continually, peaking one day before full bloom, when the maximum amount of ethylene is released in the pistil. ABA accumulation and SlNCED1 expression in the ovary remained high for three days before and after full bloom, but then both declined rapidly four days after full bloom following senescence and petal abscission and expansion of the young fruits. Overexpression of SlNCED1 significantly increased ABA levels and also up-regulated SlPP2C5 expression, which reduced ABA signaling activity. Overexpression of SlNCED1 caused up-regulation of pistil-specific Zinc finger transcription factor genes SlC3H29, SlC3H66, and SlC3HC4, which may have affected the expression of SlNCED1-mediated pistil development-related genes, causing major changes in ovary development. Increased ABA levels are due to SlNCED1 overexpresson which caused a hormonal imbalance resulting in the growth of parthenocarpic fruit. Our results indicate that SlNCED1 plays a crucial role in the regulation of ovary/pistil development and fruit set.
Collapse
|
12
|
Yuan C, Sun Q, Kong Y. Genome-wide mining seed-specific candidate genes from peanut for promoter cloning. PLoS One 2019; 14:e0214025. [PMID: 30921362 PMCID: PMC6438489 DOI: 10.1371/journal.pone.0214025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Peanut seeds are ideal bioreactors for the production of foreign recombinant proteins and/or nutrient metabolites. Seed-Specific Promoters (SSPs) are important molecular tools for bioreactor research. However, few SSPs have been characterized in peanut seeds. The mining of Seed-Specific Candidate Genes (SSCGs) is a prerequisite for promoter cloning. Here, we described an approach for the genome-wide mining of SSCGs via comparative gene expression between seed and nonseed tissues. Three hundred thirty-seven SSCGs were ultimately identified, and the top 108 SSCGs were characterized. Gene Ontology (GO) analysis revealed that some SSCGs were involved in seed development, allergens, seed storage and fatty acid metabolism. RY REPEAT and GCN4 motifs, which are commonly found in SSPs, were dispersed throughout most of the promoters of SSCGs. Expression pattern analysis revealed that all 108 SSCGs were expressed specifically or preferentially in the seed. These results indicated that the promoters of the 108 SSCGs may perform functions in a seed-specific and/or seed-preferential manner. Moreover, a novel SSP was cloned and characterized from a paralogous gene of SSCG29 from cultivated peanut. Together with the previously characterized SSP of the SSCG5 paralogous gene in cultivated peanut, these results implied that the method for SSCG identification in this study was feasible and accurate. The SSCGs identified in this work could be widely applied to SSP cloning by other researchers. Additionally, this study identified a low-cost, high-throughput approach for exploring tissue-specific genes in other crop species.
Collapse
Affiliation(s)
- Cuiling Yuan
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- Shandong Peanut Research Institute, Qingdao, Shandong, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong, China
- * E-mail: (YK); (QS)
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- * E-mail: (YK); (QS)
| |
Collapse
|
13
|
Filyushin MA, Slugina MA, Kochieva EZ, Shchennikova AV. Characteristics of INNER NO OUTER Homologous Genes in Wild Tomato Species. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Takei H, Shinozaki Y, Yano R, Kashojiya S, Hernould M, Chevalier C, Ezura H, Ariizumi T. Loss-of-Function of a Tomato Receptor-Like Kinase Impairs Male Fertility and Induces Parthenocarpic Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:403. [PMID: 31040856 PMCID: PMC6477066 DOI: 10.3389/fpls.2019.00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
Parthenocarpy arises when an ovary develops into fruit without pollination/fertilization. The mechanisms involved in genetic parthenocarpy have attracted attention because of their potential application in plant breeding and also for their elucidation of the mechanisms involved in early fruit development. We have isolated and characterized a novel small parthenocarpic fruit and flower (spff) mutant in the tomato (Solanum lycopersicum) cultivar Micro-Tom. This plant showed both vegetative and reproductive phenotypes including dwarfism of floral organs, male sterility, delayed flowering, altered axillary shoot development, and parthenocarpic production of small fruits. Genome-wide single nucleotide polymorphism array analysis coupled with mapping-by-sequencing using next generation sequencing-based high-throughput approaches resulted in the identification of a candidate locus responsible for the spff mutant phenotype. Subsequent linkage analysis and RNA interference-based silencing indicated that these phenotypes were caused by a loss-of-function mutation of a single gene (Solyc04g077010), which encodes a receptor-like protein kinase that was expressed in vascular bundles in young buds. Cytological and transcriptomic analyses suggested that parthenocarpy in the spff mutant was associated with enlarged ovarian cells and with elevated expression of the gibberellin metabolism gene, GA20ox1. Taken together, our results suggest a role for Solyc04g077010 in male organ development and indicate that loss of this receptor-like protein kinase activity could result in parthenocarpy.
Collapse
Affiliation(s)
- Hitomi Takei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Yoshihito Shinozaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science (JSPS), Kôjimachi, Japan
| | - Ryoichi Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sachiko Kashojiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michel Hernould
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d’Ornon, France
- UMR1332 BFP, University of Bordeaux, Bordeaux, France
| | - Christian Chevalier
- UMR1332 BFP, Institut National de la Recherche Agronomique (INRA), Villenave-d’Ornon, France
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tohru Ariizumi,
| |
Collapse
|
15
|
Okabe Y, Yamaoka T, Ariizumi T, Ushijima K, Kojima M, Takebayashi Y, Sakakibara H, Kusano M, Shinozaki Y, Pulungan SI, Kubo Y, Nakano R, Ezura H. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:38-51. [PMID: 30192961 DOI: 10.1093/pcp/pcy184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/04/2018] [Indexed: 05/02/2023]
Abstract
Parthenocarpy, a process in which fruit set occurs without fertilization, leads to the production of seedless fruit. A number of floral homeotic mutants with abnormal stamen development exhibit parthenocarpic fruit set. Flower development is thought to repress ovary growth before anthesis. However, the mechanism of parthenocarpic fruit development caused by aberrant flower formation is poorly understood. To investigate the molecular mechanism of parthenocarpic fruit development in floral homeotic mutants, we performed functional analysis of Tomato APETALA3 (TAP3) by loss-of-function approaches. Organ-specific promoter was used to induce organ-specific loss of function in stamen and ovary/fruit. We observed increased cell expansion in tap3 mutants and TAP3-RNAi lines during parthenocarpic fruit growth. These were predominantly accompanied by the up-regulation of GA biosynthesis genes, including SlGA20ox1, SlGA20ox2, and SlGA20ox3, as well as reduced expression of the GA-inactivating gene SlGA2ox1 and the auxin signaling gene SlARF7 involved in a crosstalk between GA and auxin. These transcriptional profiles are in agreement with the GA levels in these lines. These results suggest that stamen development negatively regulates fruit set by repressing the GA biosynthesis.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Tatsuya Yamaoka
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Ryohei Nakano
- Graduate School of Environmental and Life and Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Clark S, Yu F, Gu L, Min XJ. Expanding Alternative Splicing Identification by Integrating Multiple Sources of Transcription Data in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:689. [PMID: 31191588 PMCID: PMC6546887 DOI: 10.3389/fpls.2019.00689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 05/17/2023]
Abstract
Tomato (Solanum lycopersicum) is an important vegetable and fruit crop. Its genome was completely sequenced and there are also a large amount of available expressed sequence tags (ESTs) and short reads generated by RNA sequencing (RNA-seq) technologies. Mapping transcripts including mRNA sequences, ESTs, and RNA-seq reads to the genome allows identifying pre-mRNA alternative splicing (AS), a post-transcriptional process generating two or more RNA isoforms from one pre-mRNA transcript. We comprehensively analyzed the AS landscape in tomato by integrating genome mapping information of all available mRNA and ESTs with mapping information of RNA-seq reads which were collected from 27 published projects. A total of 369,911 AS events were identified from 34,419 genomic loci involving 161,913 transcripts. Within the basic AS events, intron retention is the prevalent type (18.9%), followed by alternative acceptor site (12.9%) and alternative donor site (7.3%), with exon skipping as the least type (6.0%). Complex AS types having two or more basic event accounted for 54.9% of total AS events. Within 35,768 annotated protein-coding gene models, 23,233 gene models were found having pre-mRNAs generating AS isoform transcripts. Thus the estimated AS rate was 65.0% in tomato. The list of identified AS genes with their corresponding transcript isoforms serves as a catalog for further detailed examination of gene functions in tomato biology. The post-transcriptional information is also expected to be useful in improving the predicted gene models in tomato. The sequence and annotation information can be accessed at plant alternative splicing database (http://proteomics.ysu.edu/altsplice).
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
| | - Feng Yu
- Department of Computer Science and Information Systems, Youngstown State University, Youngstown, OH, United States
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Jia Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH, United States
- *Correspondence: Xiang Jia Min,
| |
Collapse
|
17
|
Choi SW, Hoshikawa K, Fujita S, Thi DP, Mizoguchi T, Ezura H, Ito E. Evaluation of internal control genes for quantitative realtime PCR analyses for studying fruit development of dwarf tomato cultivar 'Micro-Tom'. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:225-235. [PMID: 31819727 PMCID: PMC6879362 DOI: 10.5511/plantbiotechnology.18.0525a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/25/2018] [Indexed: 06/10/2023]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely used to analyze the expression profiles of the genes of interest. In order to obtain accurate quantification data, normalization by using reliable internal control genes is essential. In this study, we evaluated the stability and applicability of eight internal control gene candidates for analyzing gene expression during fruit development in dwarf tomato cultivar Micro-Tom. We collected seventeen different samples from flowers and fruits at different developmental stages, and estimated the expression stability of the candidate genes by two statistical algorithms, geNorm and NormFinder. The combined ranking order and qRT-PCR analyses for expression profiles of SlYABBY2a, SlYABBY1a, FRUITFULL1 and APETALA2c suggested that EXPRESSED was the most stable and reliable internal control gene among the candidates. Our analysis also suggested that RPL8 was also suitable if the sample group is limited to fruits at different maturation stages. In addition to EXPRESSED, GAPDH was also applicable for relative quantitation to monitor gene expression profiles through fruit development from pistil to pericarp.
Collapse
Affiliation(s)
- Seung-won Choi
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Fujita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dung Pham Thi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tsuyoshi Mizoguchi
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Emi Ito
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| |
Collapse
|
18
|
Shinozaki Y, Ezura K, Hu J, Okabe Y, Bénard C, Prodhomme D, Gibon Y, Sun TP, Ezura H, Ariizumi T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci Rep 2018; 8:12043. [PMID: 30104574 PMCID: PMC6089951 DOI: 10.1038/s41598-018-30502-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
Parthenocarpy, or pollination-independent fruit set, is an attractive trait for fruit production and can be induced by increased responses to the phytohormone gibberellin (GA), which regulates diverse aspects of plant development. GA signaling in plants is negatively regulated by DELLA proteins. A loss-of-function mutant of tomato DELLA (SlDELLA), procera (pro) thus exhibits enhanced GA-response phenotypes including parthenocarpy, although the pro mutation also confers some disadvantages for practical breeding. This study identified a new milder hypomorphic allele of SlDELLA, procera-2 (pro-2), which showed weaker GA-response phenotypes than pro. The pro-2 mutant contains a single nucleotide substitution, corresponding to a single amino acid substitution in the SAW subdomain of the SlDELLA. Accumulation of the mutated SlDELLA transcripts in wild-type (WT) resulted in parthenocarpy, while introduction of intact SlDELLA into pro-2 rescued mutant phenotypes. Yeast two-hybrid assays revealed that SlDELLA interacted with three tomato homologues of GID1 GA receptors with increasing affinity upon GA treatment, while their interactions were reduced by the pro and pro-2 mutations. Both pro and pro-2 mutants produced higher fruit yields under high temperature conditions, which were resulted from higher fruit set efficiency, demonstrating the potential for genetic parthenocarpy to improve yield under adverse environmental conditions.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Duyen Prodhomme
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
19
|
Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA. Gibberellins negatively modulate ovule number in plants. Development 2018; 145:dev163865. [PMID: 29914969 PMCID: PMC6053663 DOI: 10.1242/dev.163865] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.
Collapse
Affiliation(s)
- Maria D Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Ernesto Escoms
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Maite Saura-Sánchez
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1417DSE, Argentina
| | - Ines Sánchez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isabel Lopez-Diaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| |
Collapse
|
20
|
Molesini B, Rotino GL, Dusi V, Chignola R, Sala T, Mennella G, Francese G, Pandolfini T. Two metallocarboxypeptidase inhibitors are implicated in tomato fruit development and regulated by the Inner No Outer transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:19-26. [PMID: 29241563 DOI: 10.1016/j.plantsci.2017.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 05/23/2023]
Abstract
The TCMP-1 and TCMP-2 genes of tomato code for metallocarboxypeptidase inhibitors and show sequential, tightly regulated expression patterns during flower and fruit development. In particular, TCMP-1 is highly expressed in flower buds before anthesis, while TCMP-2 in ripe fruits. Their expression pattern suggests that they might play a role in fruit development. Here, to investigate their function, we altered their endogenous levels by generating transgenic plants harbouring a chimeric gene expressing the TCMP-1 coding sequence under the control of the TCMP-2 promoter. The expression of the transgene caused an earlier fruit setting with no visible phenotypic effects on plant and fruit growth. The altered TCMP-1 regulation determines an increased level of TCMP-1 in the fruit and unexpected changes in the levels of both TCMPs in flower buds before anthesis, suggesting a mechanism of transcriptional cross-regulation. We in silico analysed TCMPs promoter regions for the presence of common cis acting elements related to ovary/fruit development and we found that both promoters contain putative binding sites for INNER NO OUTER (INO), a transcription factor implicated in ovule development. By chromatin immunoprecipitation, we proved that INO binds to TCMP-1 and TCMP-2 promoters, thereby representing a candidate regulatory factor for coordinated control of TCMPs.
Collapse
Affiliation(s)
- B Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - G L Rotino
- CREA Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Lodi, Italy
| | - V Dusi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - R Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - T Sala
- CREA Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Lodi, Italy
| | - G Mennella
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano-Faiano, Salerno, Italy
| | - G Francese
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano-Faiano, Salerno, Italy
| | - T Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|