1
|
Ribeiro MM, Rezende MI, Baldo C, Sartori D. Aspergillus welwitschiae: A Potential amylases Producer. Curr Microbiol 2022; 79:307. [PMID: 36064978 DOI: 10.1007/s00284-022-03005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Amylases, glycoside hydrolases widely used in several industrial processes, can be produced by many animals, plants, bacteria, and fungi. Fungal amylases from Aspergillus sp. hold remarkable importance in biotechnological applications for presenting a great catalysis efficiency in a wide range of pH and temperature. The production of amylases is mainly dependent on the genetic background of the species, i.e., Aspergillus strains, and abiotic factors. Among the major producers of amylases are the species of Aspergillus section Nigri, including Aspergillus welwitschiae. In this study, Aspergillus welwitschiae strains were evaluated for their ability to produce extracellular amylases. Among the 24 strains, wild Aspergillus welwitschiae UELAs 15.262 and mutant A. welwitschiae UELAs 15.262/35 strains showed greater potential for amylases production. The A. welwitschiae UELAs 15.262 produced more amylases (8645 U/mg) when compared to A. welwitschiae UELAs 15.262/35 (6666 U/mg). The amylases activity from partially purified crude enzymatic extract of A. welwitschiae UELAs 15.262 strain obtained at pH 5.5, 60 °C, resulted in 1.98-fold (3837 U/mg) increase in enzymatic activity. Likewise, the amylases activity from partially purified crude extract of A. welwitschiae UELAs 15.262/35 obtained at pH 5.0, 60 °C resulted in 2.2-fold (9077 U/mg) increase in amylases activity. The presence of metallic ions (Cu2+ and Fe3+) also provided an increase of amylases activity for both strains. To our knowledge, this is the first study reporting the ability of Aspergillus welwitschiae strains in order to produce amylases.
Collapse
Affiliation(s)
- Matheus Mertz Ribeiro
- Universidade Estadual de Londrina, P.O. Box 6001, Londrina, 86051-990, Brazil.,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid - Pr 445 Km 380 - Campus Universitário, Cx. Postal 6001, Londrina, Paraná, CEP 86051-980, Brazil
| | - Maria Inês Rezende
- Universidade Estadual de Londrina, P.O. Box 6001, Londrina, 86051-990, Brazil.,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid - Pr 445 Km 380 - Campus Universitário, Cx. Postal 6001, Londrina, Paraná, CEP 86051-980, Brazil
| | - Cristiani Baldo
- Universidade Estadual de Londrina, P.O. Box 6001, Londrina, 86051-990, Brazil.,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid - Pr 445 Km 380 - Campus Universitário, Cx. Postal 6001, Londrina, Paraná, CEP 86051-980, Brazil
| | - Daniele Sartori
- Universidade Estadual de Londrina, P.O. Box 6001, Londrina, 86051-990, Brazil. .,Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid - Pr 445 Km 380 - Campus Universitário, Cx. Postal 6001, Londrina, Paraná, CEP 86051-980, Brazil.
| |
Collapse
|
2
|
Tong Z, Zheng X, Tong Y, Shi YC, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact 2019; 18:28. [PMID: 30717739 PMCID: PMC6362574 DOI: 10.1186/s12934-019-1064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 11/11/2022] Open
Abstract
Citric acid is the world’s largest consumed organic acid and is widely used in beverage, food and pharmaceutical industries. Aspergillus niger is the main industrial workhorse for citric acid production. Since the release of the genome sequence, extensive multi-omic data are being rapidly obtained, which greatly boost our understanding of the citric acid accumulation mechanism in A. niger to a molecular and system level. Most recently, the rapid development of CRISPR/Cas9 system facilitates highly efficient genome-scale genetic perturbation in A. niger. In this review, we summarize the impact of systems biology on the citric acid molecular regulatory mechanisms, the advances in metabolic engineering strategies for enhancing citric acid production and discuss the development and application of CRISPR/Cas9 systems for genome editing in A. niger. We believe that future systems metabolic engineering efforts will redesign and engineer A. niger as a highly optimized cell factory for industrial citric acid production.
Collapse
Affiliation(s)
- Zhenyu Tong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yi Tong
- COFCO Biochemical (Anhui) Co. Ltd, Bengbu, 233000, People's Republic of China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
3
|
Baker SE. Protein hyperproduction in fungi by design. Appl Microbiol Biotechnol 2018; 102:8621-8628. [PMID: 30078136 PMCID: PMC6153651 DOI: 10.1007/s00253-018-9265-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The secretion of enzymes used by fungi to digest their environment has been exploited by humans for centuries for food and beverage production. More than a century after the first biotechnology patent, we know that the enzyme cocktails secreted by these amazing organisms have tremendous use across a number of industrial processes. Secreting the maximum titer of enzymes is critical to the economic feasibility of these processes. Traditional mutagenesis and screening approaches have generated the vast majority of strains used by industry for the production of enzymes. Until the emergence of economical next generation DNA sequencing platforms, the majority of the genes mutated in these screens remained uncharacterized at the sequence level. In addition, mutagenesis comes with a cost to an organism’s fitness, making tractable rational strain design approaches an attractive alternative. As an alternative to traditional mutagenesis and screening, controlled manipulation of multiple genes involved in processes that impact the ability of a fungus to sense its environment, regulate transcription of enzyme-encoding genes, and efficiently secrete these proteins will allow for rational design of improved fungal protein production strains.
Collapse
Affiliation(s)
- Scott E Baker
- Department of Energy Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Biosystems Design and Simulation Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|