1
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
2
|
Niu X, Wu Z, Gao F, Hou S, Liu S, Zhao X, Wang L, Guo J, Zhang F. Resonating with Cellular Pathways: Transcriptome Insights into Nonthermal Bioeffects of Middle Infrared Light Stimulation and Vibrational Strong Coupling on Cell Proliferation and Migration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0353. [PMID: 38694203 PMCID: PMC11062510 DOI: 10.34133/research.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Middle infrared stimulation (MIRS) and vibrational strong coupling (VSC) have been separately applied to physically regulate biological systems but scarcely compared with each other, especially at identical vibrational frequencies, though they both involve resonant mechanism. Taking cell proliferation and migration as typical cell-level models, herein, we comparatively studied the nonthermal bioeffects of MIRS and VSC with selecting the identical frequency (53.5 THz) of the carbonyl vibration. We found that both MIRS and VSC can notably increase the proliferation rate and migration capacity of fibroblasts. Transcriptome sequencing results reflected the differential expression of genes related to the corresponding cellular pathways. This work not only sheds light on the synergistic nonthermal bioeffects from the molecular level to the cell level but also provides new evidence and insights for modifying bioreactions, further applying MIRS and VSC to the future medicine of frequencies.
Collapse
Affiliation(s)
- Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhongyu Wu
- Department of Nuclear Medicine,
The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250013, China
- School of Radiology,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Feng Gao
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shaojie Hou
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- The School of Biomedical Engineering,
Guangzhou Medical University, Panyu District, Guangzhou 511436, China
| | - Shihao Liu
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jun Guo
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Feng Zhang
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
3
|
Ko CM, Then CK, Kuo YM, Lin YK, Shen SC. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 2023; 24:15828. [PMID: 37958813 PMCID: PMC10649088 DOI: 10.3390/ijms242115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 μm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 μg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.
Collapse
Affiliation(s)
- Chin-Meng Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Chee-Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ming Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
- Department of Dermatology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master and Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Kawasaki T, Yamaguchi Y, Kitahara H, Irizawa A, Tani M. Exploring Biomolecular Self-Assembly with Far-Infrared Radiation. Biomolecules 2022; 12:biom12091326. [PMID: 36139165 PMCID: PMC9496551 DOI: 10.3390/biom12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects on biological materials distinct from a simple thermal treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays various roles in medical and biomaterials fields. A common characteristic of those biomolecular aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard to manipulate the stacking conformation without heating, organic solvents, or chemical reagents. We discovered that those fibrous formats can be conformationally regulated by means of intense far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
- Correspondence:
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Hideaki Kitahara
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Akinori Irizawa
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| |
Collapse
|
5
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
6
|
Chen X, Zhang H, Zeng W, Wang N, Lo HH, Ip CK, Yang LJ, Hsiao WW, Sin WM, Xia C, Law BYK, Wong VKW. Far infrared irradiation suppresses experimental arthritis in rats by down-regulation of genes involved inflammatory response and autoimmunity. J Adv Res 2021; 38:107-118. [PMID: 35572409 PMCID: PMC9091720 DOI: 10.1016/j.jare.2021.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/08/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
FIR treatment improved adjuvant arthritis in rats. FIR exposure inhibited the inflammatory genes expression of synovial tissues in AIA rats. FIR exposure down-regulated inflammatory genes expression mainly through transcription factors AP-1, CEBPα, CEBPβ, c-Fos, GR, HNF-3β, USF-1, and USF-2. FIR irradiation may exhibit anti-arthritic effects through inactivation of the MAPK, PI3K-Akt, and NF-κB signaling pathways.
Introduction Objectives Methods Results Conclusion
Collapse
Affiliation(s)
- Xi Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - Hui Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - Wu Zeng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - Nick Wang
- Nick Wang Technology Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Kowloon, Hong Kong
| | - Hang Hong Lo
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - Chi Kio Ip
- School of Life & Medical Sciences, University College London, London, UK
| | - Li Jun Yang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - W.L. Wendy Hsiao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
| | - Wai Man Sin
- Department of Chinese Medicine, Kiang Wu Hospital, Macau, SAR China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Betty Yuen Kwan Law
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
- Corresponding authors at: Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, SAR China.
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR China
- Corresponding authors at: Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, SAR China.
| |
Collapse
|
7
|
Kawasaki T, Yamaguchi Y, Ueda T, Ishikawa Y, Yaji T, Ohta T, Tsukiyama K, Idehara T, Saiki M, Tani M. Irradiation effect of a submillimeter wave from 420 GHz gyrotron on amyloid peptides in vitro. BIOMEDICAL OPTICS EXPRESS 2020; 11:5341-5351. [PMID: 33014618 PMCID: PMC7510884 DOI: 10.1364/boe.395218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
On using the far-infrared radiation system, whether the irradiation effect is thermal or non-thermal is controversial. We irradiated amyloid peptides that are causal factors for amyloidosis by using a submillimeter wave from 420 GHz gyrotron. Fluorescence reagent assay, optical and electron microscopies, and synchrotron-radiation infrared microscopy showed that the irradiation increased the fibrous conformation of peptides at room temperature for 30 min. The temperature increase on the sample was only below 5 K, and a simple heating up to 318 K hardly induced the fibril formation. Therefore, the amyloid aggregation was driven by the far-infrared radiation with little thermal effect.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- IR-FEL Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Tomomi Ueda
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yuya Ishikawa
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Toyonari Yaji
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higasi, Kusatsu, Shiga 525-8577, Japan
| | - Toshiaki Ohta
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higasi, Kusatsu, Shiga 525-8577, Japan
| | - Koichi Tsukiyama
- IR-FEL Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshitaka Idehara
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Masatoshi Saiki
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| |
Collapse
|
8
|
Sharma N, Shin EJ, Kim NH, Cho EH, Nguyen BT, Jeong JH, Jang CG, Nah SY, Kim HC. Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders. Curr Neuropharmacol 2020; 17:990-1002. [PMID: 30819085 PMCID: PMC7052827 DOI: 10.2174/1570159x17666190228114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon 16419, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|