1
|
Liu S, Gao Y, Shi R, Huang H, Xu Y, Chen Z. Transcriptomics Provide Insights into the Photoperiodic Regulation of Reproductive Diapause in the Green Lacewing, Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae). INSECTS 2024; 15:136. [PMID: 38392555 PMCID: PMC10889211 DOI: 10.3390/insects15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Chrysoperla nipponensis (Okamoto) displays typical adult reproductive diapause under short photoperiods; however, our understanding of the molecular mechanism underlying photoperiod-sensitive reproduction remains limited. In this study, we performed transcriptome profiling of four treatments (the diapause-sensitive stage and pre-diapause phase under long and short photoperiods) of C. nipponensis using RNA sequencing (RNA-seq). A total of 71,654 unigenes were obtained from the samples. Enrichment analysis showed that fatty acid metabolism-related pathways were altered under a short photoperiod. Moreover, β-oxidation-related gene expression was active during the diapause-sensitive period under a short photoperiod. The knockdown of juvenile hormone acid methyltransferase 1 (Jhamt1) prolonged the pre-oviposition period but did not affect the reproductive ability of female individuals in C. nipponensis. These findings provided us with a more comprehensive understanding of the molecular mechanisms of photoperiod-sensitive diapause and show that groundwork is crucial for bolstering the long-term storage and biocontrol potential of C. nipponensis.
Collapse
Affiliation(s)
- Shaoye Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yuqing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
2
|
Sun Y, Zhan W, Dong T, Guo Y, Liu H, Gui L, Zhang Z. Real-Time Recognition and Detection of Bactrocera minax (Diptera: Trypetidae) Grooming Behavior Using Body Region Localization and Improved C3D Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:6442. [PMID: 37514739 PMCID: PMC10386511 DOI: 10.3390/s23146442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Pest management has long been a critical aspect of crop protection. Insect behavior is of great research value as an important indicator for assessing insect characteristics. Currently, insect behavior research is increasingly based on the quantification of behavior. Traditional manual observation and analysis methods can no longer meet the requirements of data volume and observation time. In this paper, we propose a method based on region localization combined with an improved 3D convolutional neural network for six grooming behaviors of Bactrocera minax: head grooming, foreleg grooming, fore-mid leg grooming, mid-hind leg grooming, hind leg grooming, and wing grooming. The overall recognition accuracy reached 93.46%. We compared the results obtained from the detection model with manual observations; the average difference was about 12%. This shows that the model reached a level close to manual observation. Additionally, recognition time using this method is only one-third of that required for manual observation, making it suitable for real-time detection needs. Experimental data demonstrate that this method effectively eliminates the interference caused by the walking behavior of Bactrocera minax, enabling efficient and automated detection of grooming behavior. Consequently, it offers a convenient means of studying pest characteristics in the field of crop protection.
Collapse
Affiliation(s)
- Yong Sun
- School of Computer Science, Yangtze University, Jingzhou 434023, China
- Jingzhou Yingtuo Technology Co., Ltd., Jingzhou 434023, China
| | - Wei Zhan
- School of Computer Science, Yangtze University, Jingzhou 434023, China
| | - Tianyu Dong
- School of Computer Science, Yangtze University, Jingzhou 434023, China
| | - Yuheng Guo
- School of Computer Science, Yangtze University, Jingzhou 434023, China
| | - Hu Liu
- School of Computer Science, Yangtze University, Jingzhou 434023, China
| | - Lianyou Gui
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Zhiliang Zhang
- School of Computer Science, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
3
|
Chen ZZ, Wang X, Kong X, Zhao YM, Xu MH, Gao YQ, Huang HY, Liu FH, Wang S, Xu YY, Kang ZW. Quantitative transcriptomic and proteomic analyses reveal the potential maintenance mechanism of female adult reproductive diapause in Chrysoperla nipponensis. PEST MANAGEMENT SCIENCE 2023; 79:1897-1911. [PMID: 36683402 DOI: 10.1002/ps.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yue-Ming Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hai-Yi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fang-Hua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhi-Wei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
4
|
Wang J, Fan H, Li Y, Zhang TF, Liu YH. Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax. INSECT SCIENCE 2022; 29:1643-1658. [PMID: 35075784 DOI: 10.1111/1744-7917.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Trehalose is the principal sugar circulating in the hemolymph of insects, and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Insect TPS is a fused enzyme containing both TPS domain and TPP domain. Thus, many insects do not possess TPP genes as TPSs have replaced the function of TPPs. However, TPPs are widely distributed across the dipteran insects, while the roles they play remain largely unknown. In this study, 3 TPP genes from notorious dipteran pest Bactrocera minax (BmiTPPB, BmiTPPC1, and BmiTPPC2) were identified and characterized. The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B. minax. Recombinant BmiTPPs were heterologously expressed in yeast cells, and all purified proteins exhibited enzymatic activities, despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs. RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection, leading to decreased trehalose content and increased glucose content. Also, suppression of BmiTPPs significantly affected expression of downstream genes and increased the mortality and malformation rate. Collectively, these results indicated that all 3 BmiTPPs in B. minax are involved in trehalose synthesis and metamorphosis. Thus, these genes could be evaluated as insecticidal targets for managing B. minax, and even for other dipteran pests.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Huan Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Southwest University, Chongqing, China
| | - Tong-Fang Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhou ZX, Dou W, Li CR, Wang JJ. CYP314A1-dependent 20-hydroxyecdysone biosynthesis is involved in regulating the development of pupal diapause and energy metabolism in the Chinese citrus fruit fly, Bactrocera minax. PEST MANAGEMENT SCIENCE 2022; 78:3384-3393. [PMID: 35514223 DOI: 10.1002/ps.6966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diapause is an environmentally preprogrammed period of arrested development, and characterized by metabolic depression that can occur during any development stage of insect. The insect steroid hormone 20-hydroxyecdysone (20E), is converted from ecdysone by the cytochrome P450 enzyme shade (CYP314A1), and it exerts a potent effect on the induction and maintenance of diapause in obligatory diapause insects. However, the regulatory mechanism of 20E in obligatory diapause development remains unclear. In this study, the function of 20E in the pupal diapause of Bactrocera minax was investigated. RESULTS We determined the expression pattern of Halloween P450 genes from larval to adult B. minax, and found differential expression of CYP314A1 from other P450 genes, with a high level in larvae and a low level in pupae. Dysfunction of CYP314A1 by dsCYP314A1 microinjection in third-instar larvae caused significant larval mortality or abnormal pupae. Compared with dsGFP and DEPC-water, dsCYP314A1-injected larvae had significantly reduced 20E titer and altered energy metabolism, and many individuals failed to pupate. Exogenous 20E microinjected into late third-instar larvae or 20E fed to early third-instar larvae both caused similar energy metabolism changes. The 20E-treated larvae of B. minax had reduced total lipids and increased amounts of trehalose and glycogen. Furthermore, 20E-treated diapause individuals showed rapid pupal development. CONCLUSION The 20E biosynthesis was regulated by the expression of CYP314A1, and was involved in the induction and termination phase of obligate diapause by regulating energy metabolism in B. minax. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chuan-Ren Li
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Huang Q, Ma Q, Li F, Zhu-Salzman K, Cheng W. Metabolomics Reveals Changes in Metabolite Profiles among Pre-Diapause, Diapause and Post-Diapause Larvae of Sitodiplosis mosellana (Diptera: Cecidomyiidae). INSECTS 2022; 13:insects13040339. [PMID: 35447781 PMCID: PMC9032936 DOI: 10.3390/insects13040339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Diapause is a programmed developmental arrest coupled with an evident reduction in metabolic rate and a dramatic increase in stress tolerance. Sitodiplosis mosellana, a periodic but devastating wheat pest, spends the hot summer and cold winter as diapausing larvae. However, little is known about the metabolic changes underlying this obligatory diapause. The objective of this study was to identify significantly altered metabolites and pathways in diapausing S. mosellana at stages of pre-diapause, diapause, post-diapause quiescence and post-diapause development using gas chromatography/time-of-flight mass spectrometry and the orthogonal partial least squares discriminant analysis. Pairwise comparisons of the four groups showed that 54 metabolites significantly changed. Of which, 37 decreased in response to diapause, including four TCA cycle intermediates and most amino acids, whereas 12 increased. Three metabolites were significantly higher in the cold quiescence stage than in other stages. The elevated metabolites included the well-known cryoprotectants trehalose, glycerol, proline and alanine. In conclusion, the low metabolic rate and cold tolerance S. mosellana displayed during diapause may be closely correlated with its reduced TCA cycle activity or/and the increased biosynthesis of cryoprotectants. The results have contributed to our understanding of the biochemical mechanism underlying diapause and the related stress tolerance in this key pest. Abstract Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Qian Ma
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Fangxiang Li
- Xi’an Agricultural Technology Extension Centre, Xi’an 710061, China;
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (K.Z.-S.); (W.C.)
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
- Correspondence: (K.Z.-S.); (W.C.)
| |
Collapse
|
7
|
Wang J, Ran LL, Li Y, Liu YH. Comparative proteomics provides insights into diapause program of Bactrocera minax (Diptera: Tephritidae). PLoS One 2021; 15:e0244493. [PMID: 33382763 PMCID: PMC7774860 DOI: 10.1371/journal.pone.0244493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
The Chinese citrus fly, Bactrocera minax, is a notorious univoltine pest that causes damage to citrus. B. minax enters obligatory pupal diapause in each generation to resist harsh environmental conditions in winter. Despite the enormous efforts that have been made in the past decade, the understanding of pupal diapause of B. minax is currently still fragmentary. In this study, the 20-hydroxyecdysone solution and ethanol solvent was injected into newly-formed pupae to obtain non-diapause- (ND) and diapause-destined (D) pupae, respectively, and a comparative proteomics analysis between ND and D pupae was performed 1 and 15 d after injection. A total of 3,255 proteins were identified, of which 190 and 463 were found to be differentially abundant proteins (DAPs) in ND1 vs D1 and ND15 vs D15 comparisons, respectively. The reliability and accuracy of LFQ method was validated by qRT-PCR. Functional analyses of DAPs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction, were conducted. The results revealed that the diapause program of B. minax is closely associated with several physiological activities, such as phosphorylation, chitin biosynthesis, autophagy, signaling pathways, endocytosis, skeletal muscle formation, protein metabolism, and core metabolic pathways of carbohydrate, amino acid, and lipid conversion. The findings of this study provide insights into diapause program of B. minax and lay a basis for further investigation into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
- * E-mail:
| | - Li-Lin Ran
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Institute of Entomology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Dong YC, Chen ZZ, Clarke AR, Niu CY. Changes in Energy Metabolism Trigger Pupal Diapause Transition of Bactrocera minax After 20-Hydroxyecdysone Application. Front Physiol 2019; 10:1288. [PMID: 31736767 PMCID: PMC6831740 DOI: 10.3389/fphys.2019.01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
Correct timing of diapause entry and exit is critical for a species' survival. While many aspects of insect diapause are well-studied, the mechanisms underlying diapause termination remain largely unknown. The Chinese citrus fly, Bactrocera minax, is a univoltine insect with an obligatory pupal diapause. The application of 20-hydroxyecdysone (20E) is known to terminate diapause in B. minax, and we used this approach, along with isobaric tags for relative and absolute quantitation technology, to determine the proteins associated with diapause termination in this fly. Among 2,258 identified proteins, 1,169 proteins significantly differed at 1, 2, and 5 days post-injection of 20E, compared with the solvent-injected control group. Functional annotation revealed that the majority of differentially expressed proteins were enriched in the core energy metabolism of amino acids, proteins, lipids, and carbohydrates as well as in signal transduction pathways including PPAR signaling, Calcium signaling, Glucagon signaling, VEGF signaling, Ras signaling, cGMP-PKG signaling, and cAMP signaling. A combined transcriptomic and proteomic analysis suggested the involvement of energy metabolism in the response of diapause transition. RNA interference experiments disclosed that a 20E injection triggers diapause termination probably through non-genomic actions, rather than nuclear receptor mediated genomic actions. Our results provide extensive proteomic resources for insect diapause transition and offer a potential for pest control by incapacitating the regulation of diapause termination either by breaking diapause prematurely or by delaying diapause termination to render diapausing individuals at a high risk of mortality.
Collapse
Affiliation(s)
- Yong-Cheng Dong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen-Zhong Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anthony R Clarke
- Faculty of Science and Technology, School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chang-Ying Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Metabolomics reveals novel insight on dormancy of aquatic invertebrate encysted embryos. Sci Rep 2019; 9:8878. [PMID: 31222034 PMCID: PMC6586685 DOI: 10.1038/s41598-019-45061-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/28/2019] [Indexed: 11/08/2022] Open
Abstract
Numerous aquatic invertebrates survive harsh environments by displaying dormancy as encysted embryos. This study aimed at determining whether metabolomics could provide molecular insight to explain the "dormancy syndrome" by highlighting functional pathways and metabolites, hence offering a novel comprehensive molecular view of dormancy. We compared the metabolome of morphologically distinct dormant encysted embryos (resting eggs) and non-dormant embryos (amictic eggs) of a rotifer (Brachionus plicatilis). Metabolome profiling revealed ~5,000 features, 1,079 of which were annotated. Most of the features were represented at significantly higher levels in non-dormant than dormant embryos. A large number of features was assigned to putative functional pathways indicating novel differences between dormant and non-dormant states. These include features associated with glycolysis, the TCA and urea cycles, amino acid, purine and pyrimidine metabolism. Interestingly, ATP, nucleobases, cyclic nucleotides, thymidine and uracil, were not detected in dormant resting eggs, suggesting an impairment of response to environmental and internal cues, cessation of DNA synthesis, transcription and plausibly translation in the dormant embryos. The levels of trehalose or its analogues, with a role in survival under desiccation conditions, were higher in resting eggs. In conclusion, the current study highlights metabolomics as a major analytical tool to functionally compare dormancy across species.
Collapse
|
10
|
Wang J, Fan H, Wang P, Liu YH. Expression Analysis Reveals the Association of Several Genes with Pupal Diapause in Bactrocera minax (Diptera: Tephritidae). INSECTS 2019; 10:insects10060169. [PMID: 31200584 PMCID: PMC6628110 DOI: 10.3390/insects10060169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022]
Abstract
The Chinese citrus fly, Bactrocera minax, is a devastating pest of citrus, which enters the obligatory diapause in overwintering pupae to resist harsh environmental conditions. However, little is known about the molecular mechanisms underlying pupal diapause. The previous transcriptomic analysis revealed that a large number of genes were regulated throughout the pupal stage. Of these genes, 12 and six ones that are remarkably up- and downregulated, respectively, specifically in intense diapause were manually screened out in present study. To validate the expression of these genes throughout the pupal stage, the quantitative real-time PCR (qRT-PCR) was conducted, and the genes displaying different expression patterns with those of previous study were excluded. Then, the expressions of remaining genes were compared between diapause-destined and non-diapause-destined pupae to reveal their association with diapause using qRT-PCR and semiquantitative PCR. Finally, five genes, TTLL3B, Cyp6a9, MSTA, Fru, and UC2, and two genes, KSPI and LYZ1, were demonstrated to be positively and negatively associated with diapause, respectively. These findings provide a solid foundation for the further investigation of molecular mechanisms underlying B. minax pupal diapause.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| | - Huan Fan
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| | - Pan Wang
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| | - Ying-Hong Liu
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Effects of Water Immersion and Soil Moisture Content on Larval and Pupal Survival of Bactrocera minax (Diptera: Tephritidae). INSECTS 2019; 10:insects10050138. [PMID: 31091677 PMCID: PMC6572153 DOI: 10.3390/insects10050138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
Abstract
Bactrocera minax, one of the most devastating citrus pests in Asia, has two developmental stages (mature larva and pupa) that complete their life cycle in the soil. Currently, southern China has a climate with abundant autumn rains, and soil moisture can be a major factor affecting the survival of larvae and pupae of B. minax. In the present study, we evaluated the effects of water immersion and high soil moisture content on the development of mature larvae and pupae of B. minax. When immersed in water for 1 d, 100% of mature larvae of B. minax were knocked out. When larvae were immersed for less than 6 d, however, more than 92% of knocked-out larvae recovered within 24 h. The days of water immersion with 50% and 90% recovery ratios (indicated as RD50 and RD90) were 10.3 d and 6.4 d, respectively. When larvae were immersed less than 6 d, the mortality ratios of larvae were not significantly different from those that were not immersed at all. The days of immersion causing 50% and 90% mortality of larvae (MD50 and MD90, respectively) were 7.6 d and 11.1 d, respectively. The pupation ratios of larvae were also observed to be not significantly different compared to non-immersion, and the days of immersion causing 50% and 90% pupation (PD50 and PD90, respectively) were 6.6 d and 0.8 d, respectively. Larval respiration rates were reduced after water immersion as a strategy for larval survival. High water content was not detrimental to pupae of B. minax. Adult emergence did not significantly decrease in soil with high water content, even though pupae were under those conditions for 161–175 d. The respiration rates of pupae were lower in soil with different moisture levels and were not significantly different, which ensured the survival of pupae in high water content. Reduced respiration rate is a strategy for survival of larvae and pupae, and remarkable tolerance to high moisture conditions could explain the high rate of spread and geographical distribution of B. minax. The results of this study provide a reference for the occurrence and control of B. minax.
Collapse
|
12
|
Batz ZA, Armbruster PA. Diapause-associated changes in the lipid and metabolite profiles of the Asian tiger mosquito, Aedes albopictus. J Exp Biol 2018; 221:jeb189480. [PMID: 30385483 PMCID: PMC6307873 DOI: 10.1242/jeb.189480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
Diapause is an alternative life-history strategy that allows organisms to enter developmental arrest in anticipation of unfavorable conditions. Diapause is widespread among insects and plays a key role in enhancing overwinter survival as well as defining the seasonal and geographic distributions of populations. Next-generation sequencing has greatly advanced our understanding of the transcriptional basis for this crucial adaptation but less is known about the regulation of embryonic diapause physiology at the metabolite level. Here, we characterized the lipid and metabolite profiles of embryonic diapause in the Asian tiger mosquito, Aedes albopictus We used an untargeted approach to capture the relative abundance of 250 lipids and 241 metabolites. We observed adjustments associated with increased energy storage, including an accumulation of lipids, the formation of larger lipid droplets and increased lipogenesis, as well as metabolite shifts suggesting reduced energy utilization. We also found changes in neuroregulatory- and insulin-associated metabolites with potential roles in diapause regulation. Finally, we detected a group of unidentified, diapause-specific metabolites which have physical properties similar to those of steroids/steroid derivatives and may be associated with the ecdysteroidal regulation of embryonic diapause in A.albopictus Together, these results deepen our understanding of the metabolic regulation of embryonic diapause and identify key targets for future investigations.
Collapse
Affiliation(s)
- Zachary A Batz
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA
| | - Peter A Armbruster
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA
| |
Collapse
|