1
|
Kieft B, Finke N, McLaughlin RJ, Nallan AN, Krzywinski M, Crowe SA, Hallam SJ. Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater. Nat Commun 2023; 14:5380. [PMID: 37666802 PMCID: PMC10477309 DOI: 10.1038/s41467-023-40907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Brandon Kieft
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Niko Finke
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ryan J McLaughlin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Aditi N Nallan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sean A Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Pourcher AM, Druilhe C, Le Maréchal C, Repérant E, Boscher E, Ziebal C, Martin L, Lebreton M, Rouxel S, Houdayer C, Le Roux S, Derongs L, Poëzévara T, Sarrazin M, Nagard B, Heurtevent L, Denis M. Quantification of indicator and pathogenic bacteria in manures and digestates from three agricultural biogas plants over a one-year period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:91-100. [PMID: 37418788 DOI: 10.1016/j.wasman.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Interest in the conversion of manure in biogas via anaerobic digestion (AD) is growing, but questions remain about the biosafety of digestates. For a period of one year, we monitored the impact of three mesophilic agricultural biogas plants (BPs) mainly fed with pig manure (BP1, BP3) or bovine manure (BP2) on the physicochemical parameters, the composition of the microbial community and the concentration of bacteria (E. coli, enterococci, Salmonella, Campylobacter, Listeria monocytogenes, Clostridium perfringens, Clostridium botulinum and Clostridioides difficile). The BP2 digestate differed from those of the two other BPs with a higher nitrogen content, more total solids and greater abundance of Clostridia MBA03 and Disgonomonadacea. Persistence during digestion ranked from least to most, was: Campylobacter (1.6 to >2.9 log10 reduction, according to the BP) < E. coli (1.8 to 2.2 log10) < Salmonella (1.1 to 1.4 log10) < enterococci (0.2 to 1.2 log10) and C. perfringens (0.2 to 1 log10) < L. monocytogenes (-1.2 to 1.6 log10) < C. difficile and C. botulinum (≤0.5 log10). No statistical link was found between the reduction in the concentration of the targeted bacteria and the physicochemical and operational parameters likely to have an effect (NH3, volatile fatty acids and total solids contents, hydraulic retention time, presence of co-substrates), underlining the fact that the fate of the bacteria during mesophilic digestion depends on many interacting factors. The reduction in concentrations varied significantly over the sampling period, underlining the need for longitudinal studies to estimate the impact of AD on pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Céline Druilhe
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Caroline Le Maréchal
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Elisabeth Repérant
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Evelyne Boscher
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Christine Ziebal
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Laure Martin
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Megane Lebreton
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Sandra Rouxel
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Catherine Houdayer
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Sophie Le Roux
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Lorine Derongs
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Typhaine Poëzévara
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | - Martine Sarrazin
- INRAE, UR OPAALE, 17 Avenue de Cucillé, CS64427, Rennes F-35044, France
| | - Bérengère Nagard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| | | | - Martine Denis
- ANSES, Ploufragan-Plouzané-Niort Laboratory, UHQPAP, 31 Rue des Fusillés, BP53, F-22440, France
| |
Collapse
|
3
|
Deng L, Zheng D, Zhang J, Yang H, Wang L, Wang W, He T, Zhang Y. Treatment and utilization of swine wastewater - A review on technologies in full-scale application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163223. [PMID: 37019235 DOI: 10.1016/j.scitotenv.2023.163223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The management of swine wastewater has become the focus of attention in the farming industry. The disposal mode of swine wastewater can be classified as field application of treated waste and treatment to meet discharge standards. The status of investigation and application of unit technology in treatment and utilization such as solid-liquid separation, aerobic treatment, anaerobic treatment, digestate utilization, natural treatment, anaerobic-aerobic combined treatment, advanced treatment, are reviewed from the full-scale application perspective. The technologies of anaerobic digestion-land application is most appropriate for small and medium-sized pig farms or large pig farms with enough land around for digestate application. The process of "solid-liquid separation-anaerobic-aerobic-advanced treatment" to meet the discharge standard is most suitable for large and extra-large pig farms without enough land. Poor operation of anaerobic digestion unit in winter, hard to completely utilize liquid digestate and high treatment cost of digested effluent for meeting discharge standard are established as the main difficulties.
Collapse
Affiliation(s)
- Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
4
|
A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biogas production involves various types of intricate microbial populations in an anaerobic digester (AD). To understand the anaerobic digestion system better, a broad-based study must be conducted on the microbial population. Deep understanding of the complete metagenomics including microbial structure, functional gene form, similarity/differences, and relationships between metabolic pathways and product formation, could aid in optimization and enhancement of AD processes. With advancements in technologies for metagenomic sequencing, for example, next generation sequencing and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic digestion. This review includes a brief introduction to the basic process of metagenomics research and includes a detailed summary of the various bioinformatics approaches, viz., total investigation of data obtained from microbial communities using bioinformatics methods to expose metagenomics characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis of anaerobic microbial community and biogas production, and (4) restriction and prediction of bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a summarized insight into bioinformatic tools and also promoting the future prospects of integrating humungous data with artificial intelligence and neural network software.
Collapse
|
5
|
Linsong H, Lianhua L, Ying L, Changrui W, Yongming S. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion. CHEMOSPHERE 2022; 303:135127. [PMID: 35654231 DOI: 10.1016/j.chemosphere.2022.135127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
This study sought to investigate the effect of bioaugmentation on batch anaerobic digestion of chicken manure. The digestion performance with and without bioaugmentation and bioaugmented efficiency under different dosages were compared. The results demonstrated that bioaugmentation increased the methane yield and shortened the methane production time in batch reactors. Compared to the un-bioaugmented control, the methane yield of bioaugmented digesters was increased by 1.2-, 1.7-, 2.2-, 3.4-, and 3.6-fold at addition ratios of 0.07, 0.14, 0.21, 0.27, and 0.34 g VS bioaugmentation seed (BS)/g VSCM, respectively. However, higher bioaugmentation doses (0.34 g VSBS/g VSCM) did not exhibit significantly improved bioaugmentation efficiency, thus, the recommended dose is 0.27 g VSBS/g VSCM for biomethane conversion of CM. Moreover, whole genome pyrosequencing revealed that Methanoculleus and Methanobrevibacter predominated the non-bioaugmentation digesters, whereas Methanothrix, Methanobacterium, and Methanomassiliicoccus were the dominant methanogens in bioaugmentation digesters. The increased methane may be explained by an increase in the Methanothrix population, which accelerated acetic acid degradation. With bioaugmentation the mainly methanogenic pathways have become more diverse. From gene function perspective, bioaugmentation enhanced metabolic activities in digestor which function better in metabolism.
Collapse
Affiliation(s)
- He Linsong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Lianhua
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Li Ying
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| | - Wang Changrui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou, 730050, China
| | - Sun Yongming
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| |
Collapse
|
6
|
Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica. ENERGIES 2022. [DOI: 10.3390/en15093252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.
Collapse
|
7
|
Arelli V, Mamindlapelli NK, Begum S, Juntupally S, Anupoju GR. Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148586. [PMID: 34328990 DOI: 10.1016/j.scitotenv.2021.148586] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Food waste (FW) and sewage sludge (SS) were anaerobically co digested under solid state conditions (Total solids >15%) and observed that mixing ratio of 3:1 and 2:1 is optimum for mesophilic and thermophilic conditions respectively. The VS reduction and methane yield at optimized ratio was 76% and 0.35 L CH4/(g VS reduced) respectively at mesophilic temperature whereas it was 88% and 0.42 L CH4/(g VS reduced) at thermophilic temperature. The metagenomic analysis for these cases were done and high throughput DNA sequencing revealed that diversified bacterial groups that participate in the different metabolisms (hydrolysis, acidogenesis and acetogenesis) were mainly dominated by the phylum Firmicutes and Bacteriodetes. Genus Methanothrix is found to be dominant which is capable of generating methane by any methanogenic pathway among all the archaeal communities in the reactors followed by Methanolinea and Methanoculleus. However, it was understood through metagenomic studies that acetotrophic pathway is observed to be the major metabolic pathway in the reactors.
Collapse
Affiliation(s)
- Vijayalakshmi Arelli
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Naveen Kumar Mamindlapelli
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sameena Begum
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India
| | - Sudharshan Juntupally
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gangagni Rao Anupoju
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Shaw GTW, Liu AC, Weng CY, Chen YC, Chen CY, Weng FCH, Wang D, Chou CY. A network-based approach to deciphering a dynamic microbiome's response to a subtle perturbation. Sci Rep 2020; 10:19530. [PMID: 33177547 PMCID: PMC7659003 DOI: 10.1038/s41598-020-73920-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 01/12/2023] Open
Abstract
Over the past decades, one main issue that has emerged in ecological and environmental research is how losses in biodiversity influence ecosystem dynamics and functioning, and consequently human society. Although biodiversity is a common indicator of ecosystem functioning, it is difficult to measure biodiversity in microbial communities exposed to subtle or chronic environmental perturbations. Consequently, there is a need for alternative bioindicators to detect, measure, and monitor gradual changes in microbial communities against these slight, chronic, and continuous perturbations. In this study, microbial networks before and after subtle perturbations by adding S. acidaminiphila showed diverse topological niches and 4-node motifs in which microbes with co-occurrence patterns played the central roles in regulating and adjusting the intertwined relationships among microorganisms in response to the subtle environmental changes. This study demonstrates that microbial networks are a good bioindicator for chronic perturbation and should be applied in a variety of ecological investigations.
Collapse
Affiliation(s)
| | - An-Chi Liu
- Bioenergy Research Center, National Taiwan University, Taipei, Taiwan. .,Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chieh-Yin Weng
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Chun Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chu-Yang Chou
- Bioenergy Research Center, National Taiwan University, Taipei, Taiwan. .,Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Structure and membership of gut microbial communities in multiple fish cryptic species under potential migratory effects. Sci Rep 2020; 10:7547. [PMID: 32372020 PMCID: PMC7200715 DOI: 10.1038/s41598-020-64570-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
The animal gut microbiota evolves quickly towards a complex community and plays crucial roles in its host’s health and development. Factors such as host genetics and environmental changes are regarded as important for controlling the dynamics of animal gut microbiota. Migratory animals are an important group for studying how these factors influence gut microbiota because they experience strong environmental perturbations during migration. The commercially important grey mullet, Mugil cephalus, is a cosmopolitan species complex that display reproductive migration behaviour. There are three cryptic species of M. cephalus fish distributed across the Northwest Pacific, and their spawning sites overlap in the Taiwan Strait. This extraordinary natural occurrence makes the grey mullet an ideal model organism for exploring the nature of wild animal-gut microbiota relationships and interactions. This study investigates the diversity and structure of the gut microbial community in three cryptic M. cephalus species using 16S rRNA amplicon sequencing. Gut microbial compositions from adult and juvenile fish samples were analysed. Our results indicate that gut microbial communities within the grey mullet share a core microbiome dominated by Proteobacteria, Firmicutes and Actinobacteria. However, the structures of gut microbial communities were more distinct between adult mullet groups than they were between juvenile ones. Intriguingly, we found that adult fish that migrate to different geographical tracts harbour gut microbiota similar to historical records of seawater microflora, along their respective migration routes. This observation provides new insights into the interaction between aquatic animal gut microbial communities and the environments along their hosts’ migratory routes, and thus warrants future study.
Collapse
|
10
|
Blasco L, Kahala M, Tampio E, Vainio M, Ervasti S, Rasi S. Effect of Inoculum Pretreatment on the Composition of Microbial Communities in Anaerobic Digesters Producing Volatile Fatty Acids. Microorganisms 2020; 8:microorganisms8040581. [PMID: 32316448 PMCID: PMC7232380 DOI: 10.3390/microorganisms8040581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/28/2023] Open
Abstract
Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and can be produced through the fermentation of organic wastes. VFAs have become an anticipated resource- and cost-effective way to replace fossil resources with higher added value and more versatile fuels and chemicals. However, there are still challenges in the production of targeted compounds from diverse and complex biomasses, such as urban biowastes. In this study, the aim was to modulate the microbial communities through inoculum treatment to enhance the production of green chemicals. Thermal and freeze-thaw treatments were applied to the anaerobic digester inoculum to inhibit the growth of methanogens and to enhance the performance of acidogenic and acetogenic bacteria. VFA fermentation after different inoculum treatments was studied in batch scale using urban biowaste as the substrate and the process performance was assessed with chemical and microbial analyses. Inoculum treatments, especially thermal treatment, were shown to increase VFA yields, which were also correlating with the dynamics of the microbial communities and retention times of the test. There was a strong correlation between VFA production and the relative abundances of the microbial orders Clostridiales (families Ruminococcaceae, Lachnospiraceae and Clostridiaceae), and Lactobacillales. A syntrophic relationship of these taxa with members of the Methanobacteriales order was also presumed.
Collapse
|
11
|
Abstract
The microbiome residing in anaerobic digesters drives the anaerobic digestion (AD) process to convert various feedstocks to biogas as a renewable source of energy. This microbiome has been investigated in numerous studies in the last century. The early studies used cultivation-based methods and analysis to identify the four guilds (or functional groups) of microorganisms. Molecular biology techniques overcame the limitations of cultivation-based methods and allowed the identification of unculturable microorganisms, revealing the high diversity of microorganisms involved in AD. In the past decade, omics technologies, including metataxonomics, metagenomics, metatranscriptomics, metaproteomics, and metametabolomics, have been or start to be used in comprehensive analysis and studies of biogas-producing microbiomes. In this chapter, we reviewed the utilities and limitations of these analysis methods, techniques, and technologies when they were used in studies of biogas-producing microbiomes, as well as the new information on diversity, composition, metabolism, and syntrophic interactions of biogas-producing microbiomes. We also discussed the current knowledge gaps and the research needed to further improve AD efficiency and stability.
Collapse
|
12
|
Genome-Centered Metagenomics Analysis Reveals the Microbial Interactions of a Syntrophic Consortium during Methane Generation in a Decentralized Wastewater Treatment System. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of anaerobic digestors to decentralized wastewater treatment systems (DWTS) has gained momentum worldwide due to their ease of operation, high efficiency, and ability to recycle wastewater. However, the microbial mechanisms responsible for the high efficiency and ability of DWTS to recycle wastewater are still unclear. In this study, the microbial community structure and function of two different anaerobic bioreactors (a primary sludge digestor, PSD, and anaerobic membrane bioreactor, AnMBR) of a DWTS located in Germany was investigated using 16S rRNA gene amplicon and metagenomic sequencing, respectively. The results showed that the microbial community structure was remarkably different in PSD and AnMBR. Methanobacteriaceae and Syntrophaceae were identified as the families that significantly differed in abundance between these two bioreactors. We also used genome-centered metagenomics to predict the microbial interactions and methane-generating pathway, which yielded 21 near-complete assembled genomes (MAGs) (average completeness of 93.0% and contamination of 2.9%). These MAGs together represented the majority of the microbial community. MAGs affiliated with methanogenic archaea, including Methanobacterium sp., Methanomicrobiales archaea, Methanomassiliicoccales archaea, and Methanosaeta concilii, were recruited, along with other syntrophic bacterial MAGs associated with anaerobic digestion. Key genes encoding enzymes involved in specific carbohydrate-active and methanogenic pathways in MAGs were identified to illustrate the microbial functions and interactions that occur during anaerobic digestion in the wastewater treatment. From the MAG information, it was predicted that bacteria affiliated with Bacteroidetes, Prolixibacteraceae, and Synergistaceae were the key bacteria involved in anaerobic digestion. In the methane production step, Methanobacterium sp. performed hydrogenotrophic methanogenesis, which reduced carbon dioxide to methane with hydrogen as the primary electron donor. Taken together, our findings provide a clear understanding of the methane-generating pathways and highlight the syntrophic interactions that occur during anaerobic digestion in DWTS.
Collapse
|
13
|
Brunner JD, Chia N. Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more effectively than species-species modelling. J R Soc Interface 2019; 16:20190423. [PMID: 31640497 PMCID: PMC6833326 DOI: 10.1098/rsif.2019.0423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Personalized models of the gut microbiome are valuable for disease prevention and treatment. For this, one requires a mathematical model that predicts microbial community composition and the emergent behaviour of microbial communities. We seek a modelling strategy that can capture emergent behaviour when built from sets of universal individual interactions. Our investigation reveals that species-metabolite interaction (SMI) modelling is better able to capture emergent behaviour in community composition dynamics than direct species-species modelling. Using publicly available data, we examine the ability of species-species models and species-metabolite models to predict trio growth experiments from the outcomes of pair growth experiments. We compare quadratic species-species interaction models and quadratic SMI models and conclude that only species-metabolite models have the necessary complexity to explain a wide variety of interdependent growth outcomes. We also show that general species-species interaction models cannot match the patterns observed in community growth dynamics, whereas species-metabolite models can. We conclude that species-metabolite modelling will be important in the development of accurate, clinically useful models of microbial communities.
Collapse
Affiliation(s)
- J D Brunner
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - N Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Shaw GTW, Weng CY, Chen CY, Weng FCH, Wang D. A systematic approach re-analyzing the effects of temperature disturbance on the microbial community of mesophilic anaerobic digestion. Sci Rep 2019; 9:6560. [PMID: 31024021 PMCID: PMC6484075 DOI: 10.1038/s41598-019-42987-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Microbial communities are key drivers of ecosystem processes, but their behavior in disturbed environments is difficult to measure. How microbial community composition and function respond disturbances is a common challenge in biomedical, environmental, agricultural, and bioenergy research. A novel way to solve this problem is to use a systems-level perspective and describe microbial communities as networks. Based on a mesophilic anaerobic digestion system of swine manure as a tool, we propose a simple framework to investigate changes in microbial communities via compositions, metabolic pathways, genomic properties and interspecies relationships in response to a long-term temperature disturbance. After temperature disturbance, microbial communities tend towards a competitive interaction network with higher GC content and larger genome size. Based on microbial interaction networks, communities responded to the disturbance by showing a transition from acetotrophic (Methanotrichaceae and Methanosarcinaceae) to methylotrophic methanogens (Methanomassiliicoccaceae and Methanobacteriaceae) and a fluctuation in rare biosphere taxa. To conclude, this study may be important for exploring the dynamic relationships between disturbance and microbial communities as a whole, as well as for providing researchers with a better understanding of how changes in microbial communities relate to ecological processes.
Collapse
Affiliation(s)
| | - Chieh-Yin Weng
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
15
|
De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol 2018; 9:2606. [PMID: 30555424 PMCID: PMC6280815 DOI: 10.3389/fmicb.2018.02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
To date, it remains unclear how anthropogenic perturbations influence the dynamics of microbial communities, what general patterns arise in response to disturbance, and whether it is possible to predict them. Here, we suggest the use of microbial mats as a model of study to reveal patterns that can illuminate the ecological processes underlying microbial dynamics in response to stress. We traced the responses to anthropogenic perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin (CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination of three computational approaches. First, we implemented MEBS (Multi-genomic Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across spatio-temporal scales with a single informative value. Second, we used robust Time Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions at different taxonomic levels. Lastly, we utilized network motifs to characterize specific interaction patterns. Our results indicate that microbial mats from CCB contain an enormous taxonomic diversity with at least 100 phyla, mainly represented by members of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions, where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs indicate that in wet conditions, there was an equilibrium between cooperation and competition (positive and negative relationships, respectively), while under dry conditions there is an over-representation of negative relationships. Furthermore, most of the keystone taxa of the TS-ENs at family level are members of the RB and the microbial mat core highlighting their crucial role within the community. Our results indicate that microbial mats are more robust to perturbation due to redundant functions that are likely shared among community members in the highly connected TS-ENs with density values close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic diversity where all community members interact with each other (low modularity), the presence of permanent of low-abundant taxa, and an increase in competition can be potential buffers against environmental disturbance in microbial mats.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Ciudad de México, Mexico
| | - Jazmín Blaz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | | | - Niza Gámez-Tamariz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|