1
|
Schreiner S, Berghaus N, Poos AM, Raab MS, Besemer B, Fenk R, Goldschmidt H, Mai EK, Müller-Tidow C, Weinhold N, Hegenbart U, Huhn S, Schönland SO. Sequence diversity of kappa light chains from patients with AL amyloidosis and multiple myeloma. Amyloid 2024; 31:86-94. [PMID: 38206120 DOI: 10.1080/13506129.2023.2295221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND AL amyloidosis (AL) results from the misfolding of immunoglobulin light chains (IG LCs). Aim of this study was to comprehensively analyse kappa LC sequences from AL patients in comparison with multiple myeloma (MM). OBJECTIVE We analysed IGKV/IGKJ usage and associated organ tropism and IGKV1/D-33 in terms of mutational analysis and theoretical biochemical properties. MATERIAL AND METHODS cDNA and bulk RNA sequencing of the LCs of AL and MM patients. RESULTS We studied 41 AL and 83 MM patients showing that IGKV1 was most expressed among kappa AL and MM, with higher frequency in AL (80% vs. 53%, p = .002). IGKV3 was underrepresented in AL (10% vs. 30%, p = .014). IGKJ2 was more commonly used in AL than in MM (39% vs. 29%). Patients with IGKV1/D-33 were associated with heart involvement (75%, p = .024). IGKV1/D-33-segments of AL had a higher mutation count (AL = 12.0 vs. MM = 10.0). FR3 and CDR3 were most frequently mutated in both, with a median mutation count in FR3 being the highest (AL = 4.0; MM = 3.5) and one mutation hotspot (FR3 (83I)) for IGKV1/D-33/IGKJ2 was associated with cardiac involvement. CONCLUSION This study confirmed that germline usage has an influence on AL amyloidosis risk and organ involvement.
Collapse
Affiliation(s)
- Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra M Poos
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Marc S Raab
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Britta Besemer
- Department of Internal Medicine II, Tübingen University Hospital, Tübingen, Germany
| | - Roland Fenk
- Department of Hematology, Oncology, and Clinical Immunology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Hartmut Goldschmidt
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elias K Mai
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Niels Weinhold
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Huhn
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of complementarity-determining regions 1 and 3 in pathologic amyloid formation by human immunoglobulin κ1 light chains. Amyloid 2023; 30:364-378. [PMID: 37216473 PMCID: PMC10663386 DOI: 10.1080/13506129.2023.2212397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. METHODS Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. RESULTS Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in βC'V and βEV that could initiate aggregation and decreased dynamics/exposure near the Cys23-Cys88 disulfide. CONCLUSIONS The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.
Collapse
Affiliation(s)
- Elena S. Klimtchuk
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Esther A. Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Lawreen H. Connors
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Olga Gursky
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston MA 02118, United States
- Department of Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
3
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
4
|
Klimtchuk ES, Peterle D, Bullitt EA, Connors LH, Engen JR, Gursky O. Role of Complementarity-Determining Regions 1 and 3 in Pathologic Amyloid Formation by Human Immunoglobulin κ1 Light Chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526662. [PMID: 36778378 PMCID: PMC9915687 DOI: 10.1101/2023.02.01.526662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease whose understanding and treatment is complicated by vast numbers of patient-specific mutations. To address molecular origins of the disease, we explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Hydrogen-deuterium exchange mass spectrometry analysis of local conformational dynamics in full-length recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation, and amyloidogenic sequence propensities using spectroscopic, electron microscopic and bioinformatics tools. The results were mapped on the atomic structures of native and fibrillary proteins. Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower. These and other differences suggest different major factors influencing amyloid formation. In 33*01-related amyloid LC, these factors involved mutation-induced destabilization of the native structure and probable stabilization of amyloid. The atypical behaviour of 39*01-related amyloid LC tracked back to increased dynamics/exposure of amyloidogenic segments in βC' V and βE V that could initiate aggregation, combined with decreased dynamics/exposure near the Cys23-Cys88 disulfide whose rearrangement is rate-limiting to amyloidogenesis. The results suggest distinct amyloidogenic pathways for closely related LCs and point to the antigen-binding, complementarity-determining regions CDR1 and CDR3, which are linked via the conserved internal disulfide, as key factors in amyloid formation by various LCs.
Collapse
|
5
|
A Conservative Point Mutation in a Dynamic Antigen-binding Loop of Human Immunoglobulin λ6 Light Chain Promotes Pathologic Amyloid Formation. J Mol Biol 2021; 433:167310. [PMID: 34678302 DOI: 10.1016/j.jmb.2021.167310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.
Collapse
|
6
|
Dissection of the amyloid formation pathway in AL amyloidosis. Nat Commun 2021; 12:6516. [PMID: 34764275 PMCID: PMC8585945 DOI: 10.1038/s41467-021-26845-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention. AL amyloidosis is caused by the accumulation of overproduced light chain (LC) fragments as fibrils in patient organs and it is the most prevalent systemic amyloidosis. Here, the authors combine biochemical and biophysical experiments to characterise the lag phase of a patient-derived truncated LC and they identify structural transitions that precede fibril formation.
Collapse
|
7
|
Pradhan T, Annamalai K, Sarkar R, Hegenbart U, Schönland S, Fändrich M, Reif B. Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:9-16. [PMID: 32946005 PMCID: PMC7973639 DOI: 10.1007/s12104-020-09975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Karthikeyan Annamalai
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
8
|
Radamaker L, Baur J, Huhn S, Haupt C, Hegenbart U, Schönland S, Bansal A, Schmidt M, Fändrich M. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat Commun 2021; 12:875. [PMID: 33558536 PMCID: PMC7870857 DOI: 10.1038/s41467-021-21126-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.
Collapse
Affiliation(s)
- Lynn Radamaker
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Julian Baur
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Stefanie Huhn
- grid.5253.10000 0001 0328 4908Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Haupt
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- grid.5253.10000 0001 0328 4908Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Schönland
- grid.5253.10000 0001 0328 4908Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Akanksha Bansal
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Matthias Schmidt
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Marcus Fändrich
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem 2021; 296:100334. [PMID: 33508322 PMCID: PMC7949129 DOI: 10.1016/j.jbc.2021.100334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.
Collapse
|
10
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
11
|
Pradhan T, Annamalai K, Sarkar R, Huhn S, Hegenbart U, Schönland S, Fändrich M, Reif B. Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability. J Biol Chem 2020; 295:18474-18484. [PMID: 33093170 PMCID: PMC7939468 DOI: 10.1074/jbc.ra120.016006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Indexed: 11/26/2022] Open
Abstract
Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany
| | | | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany
| | - Stefanie Huhn
- Medical Department V, Multiple Myeloma Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany.
| |
Collapse
|
12
|
Morgan GJ, Wall JS. The Process of Amyloid Formation due to Monoclonal Immunoglobulins. Hematol Oncol Clin North Am 2020; 34:1041-1054. [PMID: 33099422 DOI: 10.1016/j.hoc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies secreted by clonally expanded plasma cells can form a range of pathologic aggregates including amyloid fibrils. The enormous diversity in the sequences of the involved light chains may be responsible for complexity of the disease. Nevertheless, important common features have been recognized. Two recent high-resolution structures of light chain fibrils show related but distinct conformations. The native structure of the light chains is lost when they are incorporated into the amyloid fibrils. The authors discuss the processes that lead to aggregation and describe how existing and emerging therapies aim to prevent aggregation or remove amyloid fibrils from tissues.
Collapse
Affiliation(s)
- Gareth J Morgan
- Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Jonathan S Wall
- Amyloidosis and Cancer Theranostics Program, Preclinical and Diagnostic Molecular Imaging Laboratory, The University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| |
Collapse
|
13
|
Understanding Mesangial Pathobiology in AL-Amyloidosis and Monoclonal Ig Light Chain Deposition Disease. Kidney Int Rep 2020; 5:1870-1893. [PMID: 33163710 PMCID: PMC7609979 DOI: 10.1016/j.ekir.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with plasma cell dyscrasias produce free abnormal monoclonal Ig light chains that circulate in the blood stream. Some of them, termed glomerulopathic light chains, interact with the mesangial cells and trigger, in a manner dependent of their structural and physicochemical properties, a sequence of pathological events that results in either light chain–derived (AL) amyloidosis (AL-Am) or light chain deposition disease (LCDD). The mesangial cells play a key role in the pathogenesis of both diseases. The interaction with the pathogenic light chain elicits specific cellular processes, which include apoptosis, phenotype transformation, and secretion of extracellular matrix components and metalloproteinases. Monoclonal light chains associated with AL-Am but not those producing LCDD are avidly endocytosed by mesangial cells and delivered to the mature lysosomal compartment where amyloid fibrils are formed. Light chains from patients with LCDD exert their pathogenic signaling effect at the cell surface of mesangial cells. These events are generic mesangial responses to a variety of adverse stimuli, and they are similar to those characterizing other more frequent glomerulopathies responsible for many cases of end-stage renal disease. The pathophysiologic events that have been elucidated allow to propose future therapeutic approaches aimed at preventing, stopping, ameliorating, or reversing the adverse effects resulting from the interactions between glomerulopathic light chains and mesangium.
Collapse
|
14
|
Hoffmann J, Ruta J, Shi C, Hendriks K, Chevelkov V, Franks WT, Oschkinat H, Giller K, Becker S, Lange A. Protein resonance assignment by BSH-CP-based 3D solid-state NMR experiments: A practical guide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:445-465. [PMID: 31691361 DOI: 10.1002/mrc.4945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.
Collapse
Affiliation(s)
- Jutta Hoffmann
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Julia Ruta
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - W Trent Franks
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Hartmut Oschkinat
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Kazman P, Vielberg MT, Pulido Cendales MD, Hunziger L, Weber B, Hegenbart U, Zacharias M, Köhler R, Schönland S, Groll M, Buchner J. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. eLife 2020; 9:52300. [PMID: 32151314 PMCID: PMC7064341 DOI: 10.7554/elife.52300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
In systemic light chain amyloidosis, an overexpressed antibody light chain (LC) forms fibrils which deposit in organs and cause their failure. While it is well-established that mutations in the LC’s VL domain are important prerequisites, the mechanisms which render a patient LC amyloidogenic are ill-defined. In this study, we performed an in-depth analysis of the factors and mutations responsible for the pathogenic transformation of a patient-derived λ LC, by recombinantly expressing variants in E. coli. We show that proteolytic cleavage of the patient LC resulting in an isolated VL domain is essential for fibril formation. Out of 11 mutations in the patient VL, only one, a leucine to valine mutation, is responsible for fibril formation. It disrupts a hydrophobic network rendering the C-terminal segment of VL more dynamic and decreasing domain stability. Thus, the combination of proteolytic cleavage and the destabilizing mutation trigger conformational changes that turn the LC pathogenic. Amyloid light chain amyloidosis, shortened to AL amyloidosis, is a rare and often fatal disease. It is caused by a disorder of the bone marrow. Usually, cells in the bone marrow produce Y-shaped proteins called antibodies to fight infections. In AL amyloidosis, these cells release too much of the short arm of the antibody, known as its light chain, and the light chains also carry mutations. The antibodies are no longer able to assemble properly, and instead misfold and form structures, known as amyloid fibrils. The fibrils build up outside the cells, gradually causing damage to tissues and organs that can lead to life-threatening organ failure. Due to the rareness of the disease, diagnosis is often overlooked and delayed. People experience widely varying symptoms, depending on the organs affected. Also, given the diversity of antibodies people make, every person with AL amyloidosis has a variety of mutations implicated in their disease. It is thought that mutations in the antibody light chain make it unstable and prone to misfolding, but it remains unclear which specific mutations trigger a cascade of amyloid fibril formation. Now, Kazman et al. have pinpointed the exact mechanism in one case of the disease. First, tissue biopsies from a woman with advanced AL amyloidosis were analyzed, and the defunct antibody light chain was isolated. Eleven mutations were identified in the antibody light chain, only one of which was found to be responsible for the formation of the harmful fibrils. The next step was to determine how this one small change was so damaging. The experiments showed that after the antibody light chain was cut in two, a process that happens naturally in the body, this single mutation transforms it into a protein capable of causing disease. In this ‘bedside to lab bench’ study, Kazman et al. have succeeded in determining the molecular origin of one case of AL amyloidosis. The results have also shown that the instability of antibodies due to mutation does not alone explain the formation of amyloid fibrils in this disease and that the cutting of this protein in two is also important. It is hoped that, in the long run, this work will lead to new diagnostics and treatment options for people with AL amyloidosis.
Collapse
Affiliation(s)
- Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - María Daniela Pulido Cendales
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Lioba Hunziger
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Rolf Köhler
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
16
|
Rennella E, Morgan GJ, Yan N, Kelly JW, Kay LE. The Role of Protein Thermodynamics and Primary Structure in Fibrillogenesis of Variable Domains from Immunoglobulin Light Chains. J Am Chem Soc 2019; 141:13562-13571. [PMID: 31364359 DOI: 10.1021/jacs.9b05499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunoglobulin light-chain amyloidosis is a protein aggregation disease that leads to proteinaceous deposits in a variety of organs in the body and, if untreated, ultimately results in death. The mechanisms by which light-chain aggregation occurs are not well understood. Here we have used solution NMR spectroscopy and biophysical studies to probe immunoglobulin variable domain λV6-57 VL aggregation, a process that appears to drive the degenerative phenotypes in amyloidosis patients. Our results establish that aggregation proceeds via the unfolded state. We identify, through NMR relaxation experiments recorded on the unfolded domain ensemble, a series of hotspots that could be involved in the initial phases of aggregate formation. Mutational analysis of these hotspots reveals that the region that includes K16-R24 is particularly aggregation prone. Notably, this region includes the site of the R24G substitution, a mutation that is found in variable domains of λ light-chain deposits in 25% of patients. The R24G λV6-57 VL domain aggregates more rapidly than would be expected on the basis of thermodynamic stability alone, while substitutions in many of the aggregation-prone regions significantly slow down fibril formation.
Collapse
Affiliation(s)
- Enrico Rennella
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8
| | - Gareth J Morgan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States.,Department of Medicine , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Nicholas Yan
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jeffery W Kelly
- Departments of Molecular Medicine and Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry , The University of Toronto , Toronto , Ontario , Canada M5S1A8.,The Hospital for Sick Children , Program in Molecular Medicine , 555 University Avenue , Toronto , Ontario , Canada M5G1X8
| |
Collapse
|
17
|
Radamaker L, Lin YH, Annamalai K, Huhn S, Hegenbart U, Schönland SO, Fritz G, Schmidt M, Fändrich M. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat Commun 2019; 10:1103. [PMID: 30894526 PMCID: PMC6427026 DOI: 10.1038/s41467-019-09032-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloid fibrils derived from antibody light chains are key pathogenic agents in systemic AL amyloidosis. They can be deposited in multiple organs but cardiac amyloid is the major risk factor of mortality. Here we report the structure of a λ1 AL amyloid fibril from an explanted human heart at a resolution of 3.3 Å which we determined using cryo-electron microscopy. The fibril core consists of a 91-residue segment presenting an all-beta fold with ten mutagenic changes compared to the germ line. The conformation differs substantially from natively folded light chains: a rotational switch around the intramolecular disulphide bond being the crucial structural rearrangement underlying fibril formation. Our structure provides insight into the mechanism of protein misfolding and the role of patient-specific mutations in pathogenicity.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Yin-Hsi Lin
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, 70599, Stuttgart, Germany
- Institute for Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
18
|
The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Sci Rep 2019; 9:3123. [PMID: 30816248 PMCID: PMC6395779 DOI: 10.1038/s41598-019-39781-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin light chain-derived (AL) amyloidosis is a debilitating disease without known cure. Almost nothing is known about the structural factors driving the amyloidogenesis of the light chains. This study aimed to identify the fibrillogenic hotspots of the model protein 6aJL2 and in pursuing this goal, two complementary approaches were applied. One of them was based on several web-based computational tools optimized to predict fibrillogenic/aggregation-prone sequences based on different structural and biophysical properties of the polypeptide chain. Then, the predictions were confirmed with an ad-hoc synthetic peptide library. In the second approach, 6aJL2 protein was proteolyzed with trypsin, and the products incubated in aggregation-promoting conditions. Then, the aggregation-prone fragments were identified by combining standard proteomic methods, and the results validated with a set of synthetic peptides with the sequence of the tryptic fragments. Both strategies coincided to identify a fibrillogenic hotspot located at the CDR1 and β-strand C of the protein, which was confirmed by scanning proline mutagenesis analysis. However, only the proteolysis-based strategy revealed additional fibrillogenic hotspots in two other regions of the protein. It was shown that a fibrillogenic hotspot associated to the CDR1 is also encoded by several κ and λ germline variable domain gene segments. Some parts of this study have been included in the chapter “The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation”, published in Physical Biology of Proteins and Peptides, Springer 2015 (ISBN 978-3-319-21687-4).
Collapse
|
19
|
Lecoq L, Wiegand T, Rodriguez‐Alvarez FJ, Cadalbert R, Herrera GA, del Pozo‐Yauner L, Meier BH, Böckmann A. A Substantial Structural Conversion of the Native Monomer Leads to in‐Register Parallel Amyloid Fibril Formation in Light‐Chain Amyloidosis. Chembiochem 2019; 20:1027-1031. [DOI: 10.1002/cbic.201800732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Lauriane Lecoq
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRS/Université de Lyon 7, passage du Vercors 69367 Lyon France
| | - Thomas Wiegand
- Physical ChemistryETH Zürich Vladimir-Prelog Weg 2 8093 Zürich Switzerland
| | | | - Riccardo Cadalbert
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRS/Université de Lyon 7, passage du Vercors 69367 Lyon France
| | - Guillermo A. Herrera
- Department of Pathology and Translational PathobiologyLSU Health Sciences Center Shreveport 1501 Kings Highway Shreveport LA 71103 USA
| | - Luis del Pozo‐Yauner
- Instituto Nacional de Medicina Genómica Periférico Sur No. 4809 14610 Mexico City México
- Department of Pathology and Translational PathobiologyLSU Health Sciences Center Shreveport 1501 Kings Highway Shreveport LA 71103 USA
| | - Beat H. Meier
- Physical ChemistryETH Zürich Vladimir-Prelog Weg 2 8093 Zürich Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRS/Université de Lyon 7, passage du Vercors 69367 Lyon France
| |
Collapse
|
20
|
Weber B, Hora M, Kazman P, Göbl C, Camilloni C, Reif B, Buchner J. The Antibody Light-Chain Linker Regulates Domain Orientation and Amyloidogenicity. J Mol Biol 2018; 430:4925-4940. [PMID: 30414962 DOI: 10.1016/j.jmb.2018.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/28/2018] [Indexed: 12/21/2022]
Abstract
The antibody light chain (LC) consists of two domains and is essential for antigen binding in mature immunoglobulins. The two domains are connected by a highly conserved linker that comprises the structurally important Arg108 residue. In antibody light chain (AL) amyloidosis, a severe protein amyloid disease, the LC and its N-terminal variable domain (VL) convert to fibrils deposited in the tissues causing organ failure. Understanding the factors shaping the architecture of the LC is important for basic science, biotechnology and for deciphering the principles that lead to fibril formation. In this study, we examined the structure and properties of LC variants with a mutated or extended linker. We show that under destabilizing conditions, the linker modulates the amyloidogenicity of the LC. The fibril formation propensity of LC linker variants and their susceptibility to proteolysis directly correlate implying an interplay between the two LC domains. Using NMR and residual dipolar coupling-based simulations, we found that the linker residue Arg108 is a key factor regulating the relative orientation of the VL and CL domains, keeping them in a bent and dense, but still flexible conformation. Thus, inter-domain contacts and the relative orientation of VL and CL to each other are of major importance for maintaining the structural integrity of the full-length LC.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Manuel Hora
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Christoph Göbl
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany; Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstr, 1, 85764 Neuherberg, Germany
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milan, Italy
| | - Bernd Reif
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr, 4, 85748 Garching, Germany.
| |
Collapse
|
21
|
Brumshtein B, Esswein SR, Sawaya MR, Rosenberg G, Ly AT, Landau M, Eisenberg DS. Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis. J Biol Chem 2018; 293:19659-19671. [PMID: 30355736 DOI: 10.1074/jbc.ra118.004142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
Systemic light-chain amyloidosis (AL) is a human disease caused by overexpression of monoclonal immunoglobulin light chains that form pathogenic amyloid fibrils. These amyloid fibrils deposit in tissues and cause organ failure. Proteins form amyloid fibrils when they partly or fully unfold and expose segments capable of stacking into β-sheets that pair and thereby form a tight, dehydrated interface. These structures, termed steric zippers, constitute the spines of amyloid fibrils. Here, using a combination of computational (with ZipperDB and Boston University ALBase), mutational, biochemical, and protein structural analyses, we identified segments within the variable domains of Ig light chains that drive the assembly of amyloid fibrils in AL. We demonstrate that there are at least two such segments and that each one can drive amyloid fibril assembly independently of the other. Our analysis revealed that peptides derived from these segments form steric zippers featuring a typical dry interface with high-surface complementarity and occupy the same spatial location of the Greek-key immunoglobulin fold in both λ and κ variable domains. Of note, some predicted steric-zipper segments did not form amyloid fibrils or assembled into fibrils only when removed from the whole protein. We conclude that steric-zipper propensity must be experimentally validated and that the two segments identified here may represent therapeutic targets. In addition to elucidating the molecular pathogenesis of AL, these findings also provide an experimental approach for identifying segments that drive fibril formation in other amyloid diseases.
Collapse
Affiliation(s)
- Boris Brumshtein
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| | - Shannon R Esswein
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| | - Michael R Sawaya
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| | - Gregory Rosenberg
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| | - Alan T Ly
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| | - Meytal Landau
- the Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - David S Eisenberg
- From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
22
|
Higman VA. Solid-state MAS NMR resonance assignment methods for proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:37-65. [PMID: 31047601 DOI: 10.1016/j.pnmrs.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The prerequisite to structural or functional studies of proteins by NMR is generally the assignment of resonances. Since the first assignment of proteins by solid-state MAS NMR was conducted almost two decades ago, a wide variety of different pulse sequences and methods have been proposed and continue to be developed. Traditionally, a variety of 2D and 3D 13C-detected experiments have been used for the assignment of backbone and side-chain 13C and 15N resonances. These methods have found widespread use across the field. But as the hardware has changed and higher spinning frequencies and magnetic fields are becoming available, the ability to use direct proton detection is opening up a new set of assignment methods based on triple-resonance experiments. This review describes solid-state MAS NMR assignment methods using carbon detection and proton detection at different deuteration levels. The use of different isotopic labelling schemes as an aid to assignment in difficult cases is discussed as well as the increasing number of software packages that support manual and automated resonance assignment.
Collapse
Affiliation(s)
- Victoria A Higman
- Department of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TU, UK.
| |
Collapse
|
23
|
3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018; 138-139:26-38. [DOI: 10.1016/j.ymeth.2018.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
24
|
van der Wel PCA. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 88:1-14. [PMID: 29035839 PMCID: PMC5705391 DOI: 10.1016/j.ssnmr.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-β-strand/β-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|