1
|
Ji W, Shi D, Shi S, Yang X, Chen Y, An H, Pang C. TMEM16A protein: calcium binding site and its activation mechanism. Protein Pept Lett 2021; 28:1338-1348. [PMID: 34749600 DOI: 10.2174/0929866528666211105112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022]
Abstract
TMEM16A mediates calcium-activated transmembrane flow of chloride ion and a variety of physiological functions. The binding of cytoplasmic calcium ions of TMEM16A and the consequent conformational changes of it are the key issues to explore the relationship between its structure and function. In recent years, researchers have explored this issue through electrophysiological experiment, structure resolving, molecular dynamic simulation and other methods. The structures of TMEM16 family members resolved by cryo-Electron microscopy (cryo-EM) and X-ray crystallization provide the primarily basis for the investigation of the molecular mechanism of TMEM16A. However, the binding and activation mechanism of calcium ions in TMEM16A are still unclear and controversial. This review discusses four Ca2+ sensing sites of TMEM16A and analyze activation properties of TMEM16A by them, which will help to understand the structure-function relationship of TMEM16A and throw light on the molecular design targeting TMEM16A channel.
Collapse
Affiliation(s)
- Wanying Ji
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Donghong Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Sai Shi
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Xiao Yang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Yafei Chen
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Hailong An
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| | - Chunli Pang
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401. China
| |
Collapse
|
2
|
Coupling of Ca 2+ and voltage activation in BK channels through the αB helix/voltage sensor interface. Proc Natl Acad Sci U S A 2020; 117:14512-14521. [PMID: 32513714 DOI: 10.1073/pnas.1908183117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Large-conductance Ca2+ and voltage-activated K+ (BK) channels control membrane excitability in many cell types. BK channels are tetrameric. Each subunit is composed of a voltage sensor domain (VSD), a central pore-gate domain, and a large cytoplasmic domain (CTD) that contains the Ca2+ sensors. While it is known that BK channels are activated by voltage and Ca2+, and that voltage and Ca2+ activations interact, less is known about the mechanisms involved. We explore here these mechanisms by examining the gating contribution of an interface formed between the VSDs and the αB helices located at the top of the CTDs. Proline mutations in the αB helix greatly decreased voltage activation while having negligible effects on gating currents. Analysis with the Horrigan, Cui, and Aldrich model indicated a decreased coupling between voltage sensors and pore gate. Proline mutations decreased Ca2+ activation for both Ca2+ bowl and RCK1 Ca2+ sites, suggesting that both high-affinity Ca2+ sites transduce their effect, at least in part, through the αB helix. Mg2+ activation also decreased. The crystal structure of the CTD with proline mutation L390P showed a flattening of the first helical turn in the αB helix compared to wild type, without other notable differences in the CTD, indicating that structural changes from the mutation were confined to the αB helix. These findings indicate that an intact αB helix/VSD interface is required for effective coupling of Ca2+ binding and voltage depolarization to pore opening and that shared Ca2+ and voltage transduction pathways involving the αB helix may be involved.
Collapse
|
3
|
Shi S, Pang C, Guo S, Chen Y, Ma B, Qu C, Ji Q, An H. Recent progress in structural studies on TMEM16A channel. Comput Struct Biotechnol J 2020; 18:714-722. [PMID: 32257055 PMCID: PMC7118279 DOI: 10.1016/j.csbj.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
The calcium-activated chloride channel, also known as TMEM16A, shows both calcium and membrane potential dependent activation. The channel is expressed broadly and contributes to a variety of physiological processes, and it is expected to be a target for the treatment of diseases such as hypertension, pain, cystic fibrosis and lung cancer. A thorough understanding of the structural characteristics of TMEM16A is important to reveal its physiological and pathological roles. Recent studies have released several Cryo-EM structures of the channel, revealed the structural basis and mechanism of the gating of the channel. This review focused on the understandings of the structural basis and molecular mechanism of the gating and permeation of TMEM16A channel, which will provide important basis for the development of drugs targeting TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
4
|
Gupta S, Manchanda R. Effect of Gating Charges on Mediating the Dual Activation of BK Channels in Smooth Muscle Cells: A Computational Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5838-5841. [PMID: 30441663 DOI: 10.1109/embc.2018.8513579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper employs a computational model to study the dual gating modalities of BK channels in smooth muscles. These channels are gated by both membrane potential and intracellular calcium concentration. It has been previously reported that the sensors for these two stimuli are located at different regions of the channel. Thus, the two sensing modalities act independent of each other. Yet, they result in a concerted and synergistic opening of the channel pore. In this paper, we investigate the effects of these two gating mechanisms by computing the effective gating charges contributed by the channel's voltage and calcium sensors. Along with their independent contributions, we study and estimate the interplay and effect of these two modalities on the channel's activation. The voltage and calcium sensors appear to share the 'load' of the gating charges required to activate the channel based on the cytosolic calcium concentration and membrane potential. Thus, through our computational model, we demonstrate how the two independent sensors gate and coordinate the activation of the channel.
Collapse
|
5
|
Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A. An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MEDCHEMCOMM 2018; 9:920-936. [PMID: 30108981 PMCID: PMC6072422 DOI: 10.1039/c8md00166a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) has become increasingly popular due to the development of hardware and software solutions and the improvement in algorithms, which allowed researchers to scale up calculations in order to speed them up. MD simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile analysis over time. In recent years, the development of new tools able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic nature of the binding recognition process and binding-induced protein conformational changes. Moreover, modern approaches have been demonstrated to be effective and reliable in calculating some kinetic and thermodynamic parameters behind the host-guest recognition process. Starting from all of these considerations, several efforts have been made in order to integrate MD within the virtual screening process in drug discovery. Knowledge retrieved from MD can, in fact, be exploited as a starting point to build pharmacophores or docking constraints in the early stage of the screening campaign as well as to define key features, in order to unravel hidden binding modes and help the optimisation of the molecular structure of a lead compound. Based on these outcomes, researchers are nowadays using MD as an invaluable tool to discover and target previously considered undruggable binding sites, including protein-protein interactions and allosteric sites on a protein surface. As a matter of fact, the use of MD has been recognised as vital to the discovery of selective protein-protein interaction modulators. The use of a dynamic overview on how the host-guest recognition occurs and of the relative conformational modifications induced allows researchers to optimise small molecules and small peptides capable of tightly interacting within the cleft between two proteins. In this review, we aim to present the most recent applications of MD as an integrated tool to be used in the rational design of small molecules or small peptides able to modulate undruggable targets, such as allosteric sites and protein-protein interactions.
Collapse
Affiliation(s)
- Ugo Perricone
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| | - Maria Rita Gulotta
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Jessica Lombino
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Alessandro Padova
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| |
Collapse
|