1
|
Im Y, Park HY, Lee JY, Kim H, Yoo H, Kang M, Cho SJ, Hwang JH, Park YB, Cho J, Kang D, Shin SH. Impact of preserved ratio impaired spirometry on coronary artery calcium score progression: a longitudinal cohort study. ERJ Open Res 2024; 10:00819-2023. [PMID: 38259813 PMCID: PMC10801717 DOI: 10.1183/23120541.00819-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Background Preserved ratio impaired spirometry (PRISm) is associated with increased cardiovascular disease (CVD) risk and mortality. However, a causal relationship between PRISm and CVD remains unclear. We investigated the progression of coronary artery calcium (CAC) scores based on the presence of PRISm and reduced forced vital capacity (FVC). Methods This retrospective cohort study included 11 420 participants aged ≥40 years with forced expiratory volume in 1 s (FEV1)/FVC ≥0.7 who underwent at least two health screening examinations with coronary computed tomography scan between 2003 and 2020, and were without a history of CVD or interstitial lung disease. Participants with PRISm, defined as FEV1/FVC ≥0.7 and FEV1 <80% predicted, were further divided by low FVC (FVC <80% predicted). We estimated the 5-year progression rates of CAC by comparing participants with and without PRISm at baseline using mixed linear models. Results Of the 11 420 participants, 8536 (75%), 811 (7%) and 2073 (18%) had normal spirometry, PRISm with normal FVC and PRISm with low FVC, respectively. During the mean (range) follow-up of 6.0 (0.5-17.2) years, the multivariable adjusted ratio of 5-year CAC progression rates comparing participants with PRISm to those with normal spirometry was 1.08 (95% CI 1.04-1.13). This rate was higher in participants with PRISm with low FVC (1.21 (95% CI 1.12-1.30)) than in those with normal FVC. Conclusion In this longitudinal cohort study of subjects without a history of CVD, PRISm was significantly associated with CAC progression, which was more evident in the group with PRISm and low FVC.
Collapse
Affiliation(s)
- Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- These authors contributed equally to this work as first authors
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- These authors contributed equally to this work as first authors
| | - Jin-Young Lee
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- These authors contributed equally to this work as first authors
| | - Hyunsoo Kim
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, South Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo Jin Cho
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Hye Hwang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Bum Park
- Department of Pulmonary and Critical Care Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Juhee Cho
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danbee Kang
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
- These authors contributed equally to this work as senior authors
| | - Sun Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- These authors contributed equally to this work as senior authors
| |
Collapse
|
2
|
Xu L, Cai Y, He S, Zhu K, Li C, Liang Z, Cao C. Small airway dysfunction associated with poor short-term outcomes in patients undergoing thoracoscopic surgery for lung cancer. Surgery 2023; 174:1241-1248. [PMID: 37684166 DOI: 10.1016/j.surg.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Although small airway dysfunction is a common respiratory dysfunction, its prognosis after lung cancer surgery is often neglected. This study investigated the relationship between small airway dysfunction and outcomes in patients who underwent thoracoscopic surgery for lung cancer. METHODS A retrospective cohort study of patients who underwent thoracoscopic surgery was conducted between December 2019 and March 2021 at Ningbo First Hospital. We used univariate and multivariate analyses to assess the possible associations between postoperative outcomes and clinical variables, including small airway dysfunction. To balance the potential confounding factors, propensity score matching was performed to establish 1:1 small airway dysfunction and small airway normal function group matching. RESULTS In this study, 1,012 patients undergoing thoracoscopic surgery for lung cancer were enrolled. Small airway dysfunction was present in 18.7% of patients (189/1,012). The incidence of postoperative pulmonary complications in the small airway dysfunction group was higher than that of the small airway normal function group (16.4% vs 6.2%, P < .001). The most significant postoperative pulmonary complications were pneumonia (7.4% vs 2.4%, P < .001) in the small airway dysfunction and normal function groups, respectively. In addition, a significantly prolonged median hospital length of stay was observed in the small airway dysfunction group compared to the small airway normal function group (median [interquartile range], 9 [7-12] vs 8 [7-9], P < .001). After 1:1 propensity score matching, 298 patients (149 pairs) were included in the comparison between small airway dysfunction and small airway normal function, and this association remained. Postoperative pulmonary complications (13.4% vs 6.0%, P = .032) were still higher, and length of stay (median [interquartile range] 9 [7-11] vs 8 [6-10] days, P = .001) was still longer in the small airway dysfunction group. Multivariate analysis indicated that small airway dysfunction was the independent risk factor associated with both postoperative pulmonary complications (odds ratio = 2.694, 95% confidence interval: 1.640-4.426, P < .001) and prolonged length of stay (beta = 1.045, standard error = 0.159, 95% confidence interval: 0.733-1.357, P < .001). CONCLUSION Our study showed that small airway dysfunction increased the incidence of postoperative pulmonary complications and prolonged length of stay in patients undergoing thoracoscopic surgery for lung cancer.
Collapse
Affiliation(s)
- Linbin Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China; School of Medicine, Ningbo University, Ningbo, China
| | - Yuanting Cai
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China; School of Medicine, Ningbo University, Ningbo, China
| | - Shiyi He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chenwei Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhigang Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Park HJ, Byun MK, Lee J, Kim CY, Shin S, Kim Y, Rhee CK, Jung KS, Yoo KH. Airflow obstruction and chronic obstructive pulmonary disease are common in pulmonary tuberculosis even without sequelae findings on chest X-ray. Infect Dis (Lond) 2023; 55:533-542. [PMID: 37243367 DOI: 10.1080/23744235.2023.2217904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Pulmonary tuberculosis (TB) is a well-known risk factor for airflow obstruction and chronic obstructive pulmonary disease (COPD). The prognosis of TB without sequelae on chest X-ray (CXR) remains uncertain. METHODS We used the 2008-2009 Korea National Health and Nutrition Examination Survey (KNHANES) data and 2007-2012 KNHANES-matched Health Insurance Review and Assessment Service cohort data. Airflow obstruction was assessed using a pulmonary function test. COPD was defined using diagnostic codes and the use of COPD medication for 3-year. We classified subjects into three groups based on TB history and sequelae on CXR. RESULTS In 4911 subjects, the CXR(-) (no TB sequelae on CXR) post-TB group (n = 134) showed similar characteristics and normal lung function compared to that of the control group (n = 4,405), while the CXR(+) (TB sequelae on CXR) post-TB group (n = 372) showed different characteristics and reduced lung function. The prevalence of airflow obstruction was 9.3%, 13.4%, and 26.6% in control, CXR(-) post-TB, and CXR(+) post-TB groups, respectively. COPD was more common in the post-TB with CXR(+) (6.5%) or without CXR (-) (4.5%) groups, than in the control group (1.8%). Compared to the CXR(-) post-TB group, the control group showed a lower risk for airflow obstruction (OR, 0.774; p = .008). The CXR(+) post-TB group showed a higher risk for airflow obstruction (OR, 1.456; p = .011). The Control group also showed a lower risk for the development of COPD than the CXR(-) post-TB group (OR, 0.496; p = .011). CONCLUSIONS We need to educate TB patients that airway obstruction and COPD can easily develop, even if TB sequelae are not observed on CXR.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeuk Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chi Young Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sojung Shin
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youlim Kim
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Hospital, School of Medicine, Konkuk University, Seoul, Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Cui S, Shu Z, Ma Y, Lin Y, Wang H, Cao H, Liu J, Gong X. A novel computed tomography radiomic nomogram for early evaluation of small airway dysfunction development. Front Med (Lausanne) 2022; 9:944294. [PMID: 36177331 PMCID: PMC9513435 DOI: 10.3389/fmed.2022.944294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The common respiratory abnormality, small airway dysfunction (fSAD), is easily neglected. Its prognostic factors, prevalence, and risk factors are unclear. This study aimed to explore the early detection of fSAD using radiomic analysis of computed tomography (CT) images to predict fSAD progress. The patients were divided into fSAD and non-fSAD groups and divided randomly into a training group (n = 190) and a validation group (n = 82) at a 7:3 ratio. Lung kit software was used for automatic delineation of regions of interest (ROI) on chest CT images. The most valuable imaging features were selected and a radiomic score was established for risk assessment. Multivariate logistic regression analysis showed that age, radiomic score, smoking, and history of asthma were significant predictors of fSAD (P < 0.05). Results suggested that the radiomic nomogram model provides clinicians with useful data and could represent a reliable reference to form fSAD clinical treatment strategies.
Collapse
Affiliation(s)
- Sijia Cui
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyu Shu
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanqing Ma
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Lin
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanbo Cao
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Liu
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangyang Gong
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Hangzhou Medical College, Institute of Artificial Intelligence and Remote Imaging, Hangzhou, China
- *Correspondence: Xiangyang Gong,
| |
Collapse
|
5
|
Peng J, Wu F, Tian H, Yang H, Zheng Y, Deng Z, Wang Z, Xiao S, Wen X, Huang P, Lu L, Dai C, Zhao N, Huang S, Ran P, Zhou Y. Clinical characteristics of and risk factors for small airway dysfunction detected by impulse oscillometry. Respir Med 2021; 190:106681. [PMID: 34784563 DOI: 10.1016/j.rmed.2021.106681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Small airway dysfunction (SAD) is an early lesion of chronic respiratory disease that is best detected using impulse oscillometry (IOS). Few studies have investigated risk factors for IOS-defined SAD (IOS-SAD) in a large population. We aimed to explore the clinical features of and risk factors for IOS-SAD in a community-based population. METHODS We divided subjects into IOS-SAD and non-SAD groups based on a cutoff of >0.07 kPa/L/s in the difference between the resistance at 5 Hz versus the resistance at 20 Hz (R5-R20). All participants underwent spirometry, IOS, and completed a questionnaire; some participants underwent computed tomography (CT). We analyzed the risk factors for SAD based on binary logistic regression. RESULTS The total cohort comprised 1327 subjects. The prevalence of IOS-SAD was 32.9% (437/1327). Compared with the non-SAD group, the IOS-SAD group was older (64.0 ± 7.8 vs. 59.6 ± 7.8 years, p < 0.001), included less never-smokers (30.2% vs. 35.8%, p < 0.001), had greater airway resistance and worse lung function, indicated by a larger R5-R20 (0.15 ± 0.08 vs. 0.03 ± 0.02 kPa/L/s, p < 0.001) and smaller forced expiratory volume in 1 s to forced vital capacity after bronchodilation (60.2 ± 14.4% vs. 72.6 ± 10.0%, p < 0.001); on CT, the IOS-SAD group had higher prevalences of emphysema and gas trapping. Risk factors for SAD were older age, high BMI, smoking, childhood cough, and asthma. CONCLUSION Subjects with IOS-SAD had increased airway resistance and visible CT changes. Individuals with smoking exposure, advanced age, high BMI, childhood cough, and asthma were more prone to SAD. CLINICAL TRIAL REGISTRATION ChiCTR1900024643.
Collapse
Affiliation(s)
- Jieqi Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Wen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suyin Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Xiao D, Chen Z, Wu S, Huang K, Xu J, Yang L, Xu Y, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Yao W, Sun T, Shan G, Yang T, Lin Y, Zhu J, Wang R, Shi Z, Zhao J, Ye X, Song Y, Wang Q, Hou G, Zhou Y, Li W, Ding L, Wang H, Chen Y, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Wang Z, Zhang H, Bu X, Zhang X, An L, Zhang S, Cao Z, Zhan Q, Yang Y, Liang L, Liu Z, Zhang X, Cheng A, Cao B, Dai H, Chung KF, He J, Wang C. Prevalence and risk factors of small airway dysfunction, and association with smoking, in China: findings from a national cross-sectional study. THE LANCET. RESPIRATORY MEDICINE 2020; 8:1081-1093. [PMID: 32598906 DOI: 10.1016/s2213-2600(20)30155-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Small airway dysfunction is a common but neglected respiratory abnormality. Little is known about its prevalence, risk factors, and prognostic factors in China or anywhere else in the world. We aimed to estimate the prevalence of small airway dysfunction using spirometry before and after bronchodilation, both overall and in specific population subgroups; assess its association with a range of lifestyle and environmental factors (particularly smoking); and estimate the burden of small airway dysfunction in China. METHODS From June, 2012, to May, 2015, the nationally representative China Pulmonary Health study invited 57 779 adults to participate using a multistage stratified sampling method from ten provinces (or equivalent), and 50 479 patients with valid lung function testing results were included in the analysis. We diagnosed small airway dysfunction on the basis of at least two of the following three indicators of lung function being less than 65% of predicted: maximal mid-expiratory flow, forced expiratory flow (FEF) 50%, and FEF 75%. Small airway dysfunction was further categorised into pre-small airway dysfunction (defined as having normal FEV1 and FEV1/forced vital capacity [FVC] ratio before bronchodilator inhalation), and post-small airway dysfunction (defined as having normal FEV1 and FEV1/FVC ratio both before and after bronchodilator inhalation). Logistic regression yielded adjusted odds ratios (ORs) for small airway dysfunction associated with smoking and other lifestyle and environmental factors. We further estimated the total number of cases of small airway dysfunction in China by applying present study findings to national census data. FINDINGS Overall the prevalence of small airway dysfunction was 43·5% (95% CI 40·7-46·3), pre-small airway dysfunction was 25·5% (23·6-27·5), and post-small airway dysfunction was 11·3% (10·3-12·5). After multifactor regression analysis, the risk of small airway dysfunction was significantly associated with age, gender, urbanisation, education level, cigarette smoking, passive smoking, biomass use, exposure to high particulate matter with a diameter less than 2·5 μm (PM2·5) concentrations, history of chronic cough during childhood, history of childhood pneumonia or bronchitis, parental history of respiratory diseases, and increase of body-mass index (BMI) by 5 kg/m2. The ORs for small airway dysfunction and pre-small airway dysfunction were similar, whereas larger effect sizes were generally seen for post-small airway dysfunction than for either small airway dysfunction or pre-small airway dysfunction. For post-small airway dysfunction, cigarette smoking, exposure to PM2·5, and increase of BMI by 5 kg/m2 were significantly associated with increased risk, among preventable risk factors. There was also a dose-response association between cigarette smoking and post-small airway dysfunction among men, but not among women. We estimate that, in 2015, 426 (95% CI 411-468) million adults had small airway dysfunction, 253 (238-278) million had pre-small airway dysfunction, and 111 (104-126) million had post-small airway dysfunction in China. INTERPRETATION In China, spirometry-defined small airway dysfunction is highly prevalent, with cigarette smoking being a major modifiable risk factor, along with PM2·5 exposure and increase of BMI by 5 kg/m2. Our findings emphasise the urgent need to develop and implement effective primary and secondary prevention strategies to reduce the burden of this condition in the general population. FUNDING Ministry of Science and Technology of China; National Natural Science Foundation of China; National Health Commission of China.
Collapse
Affiliation(s)
- Dan Xiao
- Tobacco Medicine and Tobacco Cessation Center, China-Japan Friendship Hospital, Beijing, China; WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sinan Wu
- Data and Project Management Unit, China-Japan Friendship Hospital, Beijing, China; Center of Respiratory Medicine, and Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kewu Huang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyan Zhang
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huahao Shen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Fuqiang Wen
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wanzhen Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, China; National Center of Gerontology, Beijing, China
| | - Guangliang Shan
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Yingxiang Lin
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Jianguo Zhu
- National Center of Gerontology, Beijing, China
| | - Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhihong Shi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianping Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Ye
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Liren Ding
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Hao Wang
- State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yanfei Guo
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, Beijing, China; National Center of Gerontology, Beijing, China
| | - Fei Xiao
- National Center of Gerontology, Beijing, China
| | - Yong Lu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Xiaoxia Peng
- Clinical Epidemiology and Evidence-based Medicine, Capital Medical University, Beijing, China; Beijing Children's Hospital, National Center for Children's Health, Beijing, China
| | - Biao Zhang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Capital Medical University, Beijing, China
| | - Hong Zhang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Xiaoning Bu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Xiaolei Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Li An
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Shu Zhang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Zhixin Cao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Yuanhua Yang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Lirong Liang
- Department of Epidemiology, Capital Medical University, Beijing, China; Beijing Institute of Respiratory Medicine, Beijing, China
| | - Zhao Liu
- Tobacco Medicine and Tobacco Cessation Center, China-Japan Friendship Hospital, Beijing, China; WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinran Zhang
- Data and Project Management Unit, China-Japan Friendship Hospital, Beijing, China; Center of Respiratory Medicine, and Data and Project Management Unit, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Anqi Cheng
- Tobacco Medicine and Tobacco Cessation Center, China-Japan Friendship Hospital, Beijing, China; WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London and Royal Brompton and Harefield NHS Trust, London, UK
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Chao-Yang Hospital, Department of Respiratory Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Avila N, Nazeran H, Gordillo N, Meraz E, Gochicoa L. Computer-aided classification of small airways dysfunction using impulse oscillometric features: a children-focused review. ACTA ACUST UNITED AC 2020; 65:121-131. [PMID: 31600137 DOI: 10.1515/bmt-2018-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/12/2019] [Indexed: 11/15/2022]
Abstract
Background and objective Spirometry, which is the most commonly used technique for asthma diagnosis, is often unsuitable for small children as it requires them to follow exact instructions and perform extreme inspiration and expiration maneuvers. In contrast, impulse oscillometry (IOS) is a child-friendly technique that could serve as an alternative pulmonary function test (PFT) for asthma diagnosis and control in children as it offers several advantages over spirometry. However, the complex test results of IOS may be difficult to be understood by practitioners due to its reliance on mechanical and electrical models of the human pulmonary system. Recognizing this reality, computer-aided decision systems could help to improve the utility of IOS. The main objective of this paper is to understand the current computer-aided classification research works on this topic. Methods This paper presents a methodological review of research works related to the computer-aided classification of peripheral airway obstruction using the IOS technique, which is focused on, but not limited to, asthmatic children. Publications that focused on computer-aided classification of asthma, peripheral dysfunction and/or small airway impairment (SAI) based on impulse oscillometric features were selected for this review. Results Out of the 34 articles that were identified using the selected scientific web databases and topic-related parameters, only eight met the eligibility criteria. The most relevant results of the articles reviewed are related to the performance of the different classifiers using static features which are solely based on the first pulmonary function testing measurements (IOS and spirometry). These results included an overall classifiers' accuracy performance ranging from 42.24% to 98.61%. Conclusion There is still a great opportunity to improve the utility of IOS by developing more computer-aided robust classifiers, specifically for the asthmatic children population as the classification studies performed to date (1) are limited in number, (2) include features derived from tests that are not optimally suitable for children, (3) are solely bi-class (mostly asthma and non-asthma) and therefore fail to include different degrees of peripheral obstruction for disease prevention and control and (4) lack of validation in cases that focus on multi-class classification of the different degrees of peripheral airway obstruction.
Collapse
Affiliation(s)
- Nancy Avila
- Deparment of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Homer Nazeran
- Deparment of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.,Department of Electrical and Computer Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Nelly Gordillo
- Department of Electrical and Computer Engineering, Universidad Autónoma de Ciudad Juárez, Ave. del Charro No. 450, Norte, Ciudad Juárez, Chihuahua 32310, Mexico
| | - Erika Meraz
- Department of Electrical and Computer Engineering, Universidad Autónoma de Ciudad Juárez, Ave. del Charro No. 450, Norte, Ciudad Juárez, Chihuahua 32310, Mexico
| | - Laura Gochicoa
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Col. Sección XVI, Alcaldía Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
8
|
García-Quero C, Carreras J, Martínez-Cerón E, Casitas R, Galera R, Utrilla C, Torres I, García-Río F. Small Airway Dysfunction Impairs Quality of Life Among Smokers With No Airflow Limitation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.arbr.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Small Airway Dysfunction Impairs Quality of Life Among Smokers With No Airflow Limitation. Arch Bronconeumol 2019; 56:9-17. [PMID: 30824207 DOI: 10.1016/j.arbres.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Small airway dysfunction (SAD) caused by smoking contributes to the early onset of airflow limitation (AFL), although its impact on patients' perception of health is largely unknown. We aimed to evaluate the frequency of SAD in active smokers without AFL, and to compare health-related quality of life (HRQoL) of non-smokers, smokers without SAD, smokers with SAD, and smokers with AFL. METHODS A total of 53 active smokers without AFL, 20 smokers with AFL, and 20 non-smokers completed the SF-36 and EuroQoL questionnaires and performed impulse oscillometry and spirometry. Pulmonary parenchymal attenuation was determined in inspiration and expiration. SAD was determined to exist when resistance at 5Hz (R5), the difference between R5 and R20, and reactance area (AX) exceeded the upper limit of normal. RESULTS In total, 35.8% of smokers without AFL had SAD. No differences were detected in spirometric parameters or pulmonary attenuation between smokers with or without AFL and non-smokers. However, smokers with SAD had worse scores on HRQoL questionnaires than smokers without SAD or non-smokers, and scores compared to smokers with AFL were intermediate. R5 and X5 were identified as independent determinants of HRQoL in smokers without AFL. CONCLUSIONS SAD is common in smokers without AFL, affecting one third of this population, and independently affecting their perception of health.
Collapse
|
10
|
Small Airway Disease in Pulmonary Hypertension-Additional Diagnostic Value of Multiple Breath Washout and Impulse Oscillometry. J Clin Med 2018; 7:jcm7120532. [PMID: 30544842 PMCID: PMC6306708 DOI: 10.3390/jcm7120532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/28/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Airways obstruction is frequent in patients with pulmonary hypertension (PH). Small airway disease (SAD) was identified as a major contributor to resistance and symptoms. However, it is easily missed using current diagnostic approaches. We aimed to evaluate more elaborate diagnostic tests such as impulse oscillometry (IOS) and SF6-multiple-breath-washout (MBW) for the assessment of SAD in PH. Twenty-five PH patients undergoing body-plethysmography, IOS and MBW testing were prospectively included and equally matched to pulmonary healthy and non-healthy controls. Lung clearance index (LCI) and acinar ventilation heterogeneity (Sacin) differed significantly between PH, healthy and non-healthy controls. Likewise, differences were found for all IOS parameters between PH and healthy, but not non-healthy controls. Transfer factor corrected for ventilated alveolar volume (TLCO/VA), frequency dependency of resistance (D5-20), resonance frequency (Fres) and Sacin allowed complete differentiation between PH and healthy controls (AUC (area under the curve) = 1.0). Likewise, PH patients were separated from non-healthy controls (AUC 0.762) by D5-20, LCI and conductive ventilation heterogeneity (Scond). Maximal expiratory flow (MEF) values were not associated with additional diagnostic values. MBW and IOS are feasible in PH patients both providing additional information. This can be used to discriminate PH from healthy and non-healthy controls. Therefore, further research targeting SAD in PH and evaluation of therapeutic implications is justified.
Collapse
|