1
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Bai Y, Zhu Y, He X, Huang R, Xu X, Yang L, Wang Z, Zhu R. Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M 6A Methylation. Int J Nanomedicine 2024; 19:4181-4197. [PMID: 38766656 PMCID: PMC11100968 DOI: 10.2147/ijn.s463141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, 200065, People’s Republic of China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
3
|
Gui Y, He Y, Wang D, Wang S, Zhang Y. Advances in Cell Transplantation Therapy for Limbal Stem Cell Deficiency. Curr Stem Cell Res Ther 2024; 19:933-941. [PMID: 37605422 DOI: 10.2174/1574888x18666230821102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Limbal stem cells (LSCs) are essential for maintaining corneal transparency and ocular surface integrity. Many external factors or genetic diseases can lead to corneal limbal stem cell deficiency (LSCD), resulting in the loss of barrier and corneal epithelial cell renewal functions. Stem cell transplantation is one of the primary treatments for LSCD, including limbal transplantation and cultivated limbal epithelial transplantation. In addition, a variety of non-limbal stem cell lines have been experimented with for LSCD treatment. Biological scaffolds are also used to support in vitro stem cell culture and transplantation. Here, we review the mechanisms of corneal maintenance by LSCs, the clinical stage and surgical treatment of LSCD, the source of stem cells, and the biological scaffolds required for in vitro culture. METHODS This study is a narrative retrospective study aimed at collecting available information on various aspects of surgical treatments for LSCD. Relevant literature was searched in a range of online databases, including Web of Science, Scopus, and PubMed from 2005 to March, 2023. RESULTS A total of 397 relevant articles were found, and 49 articles with strong relevance to the studies in this paper were obtained and analyzed. Moreover, 11 of these articles were on the concept of LSCD and the mechanism of LESCs maintaining the corneal epithelium, 3 articles on the staging and grading of LSCD, 17 articles on cell transplantation methods and donor cell sources, and 18 articles on scaffolds for delivering stem cells. We also summarized the advantages and disadvantages of different cell transplantation methods and the benefits and limitations of scaffolds based on the above literature. CONCLUSION The treatment of LSCD is determined by the clinical stage and whether it involves monocular or binocular eyes. Appropriate surgical techniques should be taken for LSCD patients in order to reconstruct the ocular surface, relieve symptoms, and restore visual function. Meanwhile, biological scaffolds assist in the ex vivo culture and implantation of stem cells.
Collapse
Affiliation(s)
- Yujia Gui
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Yuxi He
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Di Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Shurong Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
5
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
6
|
Soleimani M, Cheraqpour K, Koganti R, Baharnoori SM, Djalilian AR. Concise Review: Bioengineering of Limbal Stem Cell Niche. Bioengineering (Basel) 2023; 10:111. [PMID: 36671683 PMCID: PMC9855097 DOI: 10.3390/bioengineering10010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The corneal epithelium is composed of nonkeratinized stratified squamous cells and has a significant turnover rate. Limbal integrity is vital to maintain the clarity and avascularity of the cornea as well as regeneration of the corneal epithelium. Limbal epithelial stem cells (LESCs) are located in the basal epithelial layer of the limbus and preserve this homeostasis. Proper functioning of LESCs is dependent on a specific microenvironment, known as the limbal stem cell niche (LSCN). This structure is made up of various cells, an extracellular matrix (ECM), and signaling molecules. Different etiologies may damage the LSCN, leading to limbal stem cell deficiency (LSCD), which is characterized by conjunctivalization of the cornea. In this review, we first summarize the basics of the LSCN and then focus on current and emerging bioengineering strategies for LSCN restoration to combat LSCD.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
8
|
The progress in techniques for culturing human limbal epithelial stem cells. Hum Cell 2023; 36:1-14. [PMID: 36181663 DOI: 10.1007/s13577-022-00794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
In vitro culture of human limbal epithelial stem cells (hLESCs) is crucial to cell therapy in the treatment of limbal stem cell deficiency, a potentially vision-threatening disease that is characterized by persistent corneal epithelial defects and corneal epithelium conjunctivalization. Traditionally, hLESCs are cultivated based on either limbal tissue explants or single-cell suspensions in culture media containing xenogenous components, such as fetal bovine serum and murine 3T3 feeder cells. Plastic culture dishes and human amniotic membranes are classical growth substrates used in conventional hLESC culture systems. The past few decades have witnessed considerable progress and innovations in hLESC culture techniques to ensure a higher level of biosafety and lower immunogenicity for further cell treatment, including complete removal of xenogenous components from culture media, the application of human-derived feeder cells, and the development of novel scaffolds. Three-dimensional artificial niches and three-dimensional culture techniques have also been established to simulate the real microenvironment of limbal crypts for better cell outgrowth and proliferation. All these progresses ensure that in vitro cultured hLESCs are more adaptable to translational stem cell therapy for limbal stem cell deficiency.
Collapse
|
9
|
Keng CT, Guo K, Liu YC, Shen KY, Lim DS, Lovatt M, Ang HP, Mehta JS, Chew WL. Multiplex viral tropism assay in complex cell populations with single-cell resolution. Gene Ther 2022; 29:555-565. [PMID: 35999303 PMCID: PMC9482877 DOI: 10.1038/s41434-022-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy constitutes one of the most promising mode of disease treatments. Two key properties for therapeutic delivery vectors are its transduction efficiency (how well the vector delivers therapeutic cargo to desired target cells) and specificity (how well it avoids off-target delivery into unintended cells within the body). Here we developed an integrated bioinformatics and experimental pipeline that enables multiplex measurement of transduction efficiency and specificity, particularly by measuring how libraries of delivery vectors transduce libraries of diverse cell types. We demonstrated that pairing high-throughput measurement of AAV identity with high-resolution single-cell RNA transcriptomic sequencing maps how natural and engineered AAV variants transduce individual cells within human cerebral and ocular organoids. We further demonstrate that efficient AAV transduction observed in organoids is recapitulated in vivo in non-human primates. This library-on-library technology will be important for determining the safety and efficacy of therapeutic delivery vectors.
Collapse
Affiliation(s)
- Choong Tat Keng
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Ke Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore.,Cornea and External Eye Diseases, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kimberle Yanyin Shen
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Daryl Shern Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Matthew Lovatt
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Heng Pei Ang
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore.,Cornea and External Eye Diseases, Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research, 60 Biopolis Street, Singapore, 138672, Singapore. .,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
10
|
Klein SG, Alsolami SM, Arossa S, Ramos-Mandujano G, Parry AJ, Steckbauer A, Duarte CM, Li M. In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture. Commun Biol 2022; 5:119. [PMID: 35136190 PMCID: PMC8826360 DOI: 10.1038/s42003-022-03065-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian cell cultures are a keystone resource in biomedical research, but the results of published experiments often suffer from reproducibility challenges. This has led to a focus on the influence of cell culture conditions on cellular responses and reproducibility of experimental findings. Here, we perform frequent in situ monitoring of dissolved O2 and CO2 with optical sensor spots and contemporaneous evaluation of cell proliferation and medium pH in standard batch cultures of three widely used human somatic and pluripotent stem cell lines. We collate data from the literature to demonstrate that standard cell cultures consistently exhibit environmental instability, indicating that this may be a pervasive issue affecting experimental findings. Our results show that in vitro cell cultures consistently undergo large departures of environmental parameters during standard batch culture. These findings should catalyze further efforts to increase the relevance of experimental results to the in vivo physiology and enhance reproducibility.
Collapse
Affiliation(s)
- Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Samhan M Alsolami
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Silvia Arossa
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Anieka J Parry
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alexandra Steckbauer
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Mo Li
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
11
|
Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021; 13:pharmaceutics13091483. [PMID: 34575560 PMCID: PMC8466237 DOI: 10.3390/pharmaceutics13091483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient's eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.
Collapse
|
12
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Corneal Epithelial Repair In Vitro. Cells 2021; 10:cells10051254. [PMID: 34069578 PMCID: PMC8160941 DOI: 10.3390/cells10051254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.
Collapse
|
13
|
Sun C, Wang H, Ma Q, Chen C, Yue J, Li B, Zhang X. Time-course single-cell RNA sequencing reveals transcriptional dynamics and heterogeneity of limbal stem cells derived from human pluripotent stem cells. Cell Biosci 2021; 11:24. [PMID: 33485387 PMCID: PMC7824938 DOI: 10.1186/s13578-021-00541-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cell-derived limbal stem cells (hPSC-derived LSCs) provide a promising cell source for corneal transplants and ocular surface reconstruction. Although recent efforts in the identification of LSC markers have increased our understanding of the biology of LSCs, much more remains to be characterized in the developmental origin, cell fate determination, and identity of human LSCs. The lack of knowledge hindered the establishment of efficient differentiation protocols for generating hPSC-derived LSCs and held back their clinical application. RESULTS Here, we performed a time-course single-cell RNA-seq to investigate transcriptional heterogeneity and expression changes of LSCs derived from human embryonic stem cells (hESCs). Based on current protocol, expression heterogeneity of reported LSC markers were identified in subpopulations of differentiated cells. EMT has been shown to occur during differentiation process, which could possibly result in generation of untargeted cells. Pseudotime trajectory analysis revealed transcriptional changes and signatures of commitment of hESCs-derived LSCs and their progeny-the transit amplifying cells. CONCLUSION Single-cell RNA-seq revealed time-course expression changes and significant transcriptional heterogeneity during hESC-derived LSC differentiation in vitro. Our results demonstrated candidate developmental trajectory and several new candidate markers for LSCs, which could facilitate elucidating the identity and developmental origin of human LSCs in vivo.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Hailun Wang
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Jianhui Yue
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| |
Collapse
|
14
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
15
|
Zhang P, Ma XY, Huang DT, Yang XY. The capacity of goat epidermal adult stem cells to reconstruct the damaged ocular surface of total LSCD and activate corneal genetic programs. J Mol Histol 2020; 51:277-286. [PMID: 32388840 DOI: 10.1007/s10735-020-09879-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Epidermal adult stem cells (EpiASCs) have the potential for unlimited proliferation and differentiation, however, the ability of these stem cells to activate corneal genetic programs in response to corneal stroma stimulation needs to be further validated. Herein, a feasible strategy was developed to reconstruct the damaged corneal surface in a goat model with total limbal stem cell deficiency (LSCD) by transplanting EpiASCs, which had been explanted and cultured from the skin of an adult ram goat and were then purified by selecting single cell-derived clones and cultivating them on a denuded human amniotic membrane (HAM). These artificial tissues were then successfully transplanted into ewe goats with total LSCD. Binding of EpiASCs to the base membrane of an EpiASCs-HAM-Sheet (EHS) indicated their proliferating status. After transplantation, the EpiASCs could survive in the host tissue and they reconstructed the damaged ocular surface of total LSCD. The crystal reconstructed corneal epithelium expressed CK3 and Pax-6 similar to normal corneal epithelium and expressed the Sry gene after transplantation. These results demonstrated that EpiASCs could be induced to differentiate into corneal epithelial cell types in a corneal microenvironment and had the ability to activate corneal genetic programs. This work offer a foundation for promoting tissue-engineered cornea into clinical application.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Life Science, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Xi-Ya Ma
- Department of Life Science, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Dian-Tong Huang
- Department of Life Science, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Xue-Yi Yang
- Department of Life Science, Luoyang Normal University, Luoyang, 471934, Henan, China.
| |
Collapse
|
16
|
Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol 2018; 11:2004-2010. [PMID: 30588437 DOI: 10.18240/ijo.2018.12.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness caused by limbal stem cell deficiency (LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed.
Collapse
Affiliation(s)
- Jie Zhu
- Queen Mary School, Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mark Slevin
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Bao-Qiang Guo
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Shou-Rong Zhu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| |
Collapse
|
17
|
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a personalized approach to study conditions and diseases including those of the eye that lack appropriate animal models to facilitate the development of novel therapeutics. Corneal disease is one of the most common causes of blindness. Hence, significant efforts are made to develop novel therapeutic approaches including stem cell-derived strategies to replace the diseased or damaged corneal tissues, thus restoring the vision. The use of adult limbal stem cells in the management of corneal conditions has been clinically successful. However, its limited availability and phenotypic plasticity necessitate the need for alternative stem cell sources to manage corneal conditions. Mesenchymal and embryonic stem cell-based approaches are being explored; nevertheless, their limited differentiation potential and ethical concerns have posed a significant hurdle in its clinical use. hiPSCs have emerged to fill these technical and ethical gaps to render clinical utility. In this review, we discuss and summarize protocols that have been devised so far to direct differentiation of human pluripotent stem cells (hPSCs) to different corneal cell phenotypes. With the summarization, our review intends to facilitate an understanding which would allow developing efficient and robust protocols to obtain specific corneal cell phenotype from hPSCs for corneal disease modeling and for the clinics to treat corneal diseases and injury.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
18
|
Hongisto H, Vattulainen M, Ilmarinen T, Mikhailova A, Skottman H. Efficient and Scalable Directed Differentiation of Clinically Compatible Corneal Limbal Epithelial Stem Cells from Human Pluripotent Stem Cells. J Vis Exp 2018. [PMID: 30417867 DOI: 10.3791/58279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal limbal epithelial stem cells (LESCs) are responsible for continuously renewing the corneal epithelium, and thus maintaining corneal homeostasis and visual clarity. Human pluripotent stem cell (hPSC)-derived LESCs provide a promising cell source for corneal cell replacement therapy. Undefined, xenogeneic culture and differentiation conditions cause variation in research results and impede the clinical translation of hPSC-derived therapeutics. This protocol provides a reproducible and efficient method for hPSC-LESC differentiation under xeno- and feeder cell-free conditions. Firstly, monolayer culture of undifferentiated hPSC on recombinant laminin-521 (LN-521) and defined hPSC medium serves as a foundation for robust production of high-quality starting material for differentiations. Secondly, a rapid and simple hPSC-LESC differentiation method yields LESC populations in only 24 days. This method includes a four-day surface ectodermal induction in suspension with small molecules, followed by adherent culture phase on LN-521/collagen IV combination matrix in defined corneal epithelial differentiation medium. Cryostoring and extended differentiation further purifies the cell population and enables banking of the cells in large quantities for cell therapy products. The resulting high-quality hPSC-LESCs provide a potential novel treatment strategy for corneal surface reconstruction to treat limbal stem cell deficiency (LSCD).
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere;
| | - Meri Vattulainen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| | - Alexandra Mikhailova
- Department of Ophthalmology, SILK, Faculty of Medicine and Life Sciences, University of Tampere
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere
| |
Collapse
|
19
|
Yang J, Park JW, Zheng D, Xu RH. Universal Corneal Epithelial-Like Cells Derived from Human Embryonic Stem Cells for Cellularization of a Corneal Scaffold. Transl Vis Sci Technol 2018; 7:23. [PMID: 30323996 PMCID: PMC6181193 DOI: 10.1167/tvst.7.5.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose We generated universal corneal epithelial cells (CEC) from human embryonic stem cells (hESC) by genetically removing human leukocyte antigens (HLA) class I from the cell surface. Methods The serum-free, growth factor-free, and defined medium E6 was used to differentiate hESC to CEC. Decellularized murine corneas were recellularized with hESC-derived CEC. Using CRISPR/Cas9, β-2-microglobulin (B2M) was deleted in hESC to block the assembly of HLA class-I antigens on the cell surface to generate B2M−/− CEC. Results E6 alone was sufficient to allow hESC differentiation to CEC. A time-course analysis of the global gene expression of the differentiating cells indicates that the differentiation closely resembles the corneal development in vivo. The hESC-CEC were highly proliferative, and could form multilayer epithelium in decellularized murine cornea, retain its transparency, and form intact tight junctions on its surface. As reported before, B2M knockout led to the absence of HLA class-I on the cell surface of hESC and subsequently derived CEC following stimulation with inflammatory factors. Moreover, B2M−/− CEC, following transplantation into mouse eyes, caused less T-cell infiltration in the limbal region of the eye than the wild-type control. Conclusions CEC can be derived from hESC via a novel and simple protocol free of any proteins, hESC-CEC seeded on decellularized animal cornea form tight junctions and allow light transmittance, and B2M−/− CEC are hypoimmunogenic both in vitro and in vivo. Translational Relevance B2M−/− hESC-CEC can be an unlimited and universal therapy for corneal repair in patients of any HLA type.
Collapse
Affiliation(s)
- Juan Yang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
20
|
Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther 2017; 8:291. [PMID: 29284513 PMCID: PMC5747074 DOI: 10.1186/s13287-017-0738-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) provide a promising cell source for ocular cell replacement therapy, but often lack standardized and xenogeneic-free culture and differentiation protocols. We aimed to develop a xeno- and feeder cell-free culture system for undifferentiated hPSCs along with efficient methods to derive ocular therapy target cells: retinal pigment epithelial (RPE) cells and corneal limbal epithelial stem cells (LESCs). METHODS Multiple genetically distinct hPSC lines were adapted to a defined, xeno-, and feeder-free culture system of Essential 8™ medium and laminin-521 matrix. Thereafter, two-stage differentiation methods toward ocular epithelial cells were established utilizing xeno-free media and a combination of extracellular matrix proteins. Both differentiation methods shared the same basal elements, using only minor inductive modifications during early differentiation towards desired cell lineages. The resulting RPE cells and LESCs were characterized after several independent differentiation experiments and recovery after xeno-free cryopreservation. RESULTS The defined, xeno-, and feeder-free culture system provided a robust means to generate high-quality hPSCs with chromosomal stability limited to early passages. Inductive cues introduced during the first week of differentiation had a substantial effect on lineage specification, cell survival, and even mature RPE properties. Derivative RPE formed functional epithelial monolayers with mature tight junctions and expression of RPE genes and proteins, as well as phagocytosis and key growth factor secretion capacity after 9 weeks of maturation on inserts. Efficient LESC differentiation led to cell populations expressing LESC markers such as p40/p63α by day 24. Finally, we established xeno-free cryobanking protocols for pluripotent hPSCs, hPSC-RPE cells, and hPSC-LESCs, and demonstrated successful recovery after thawing. CONCLUSIONS We propose methods for efficient and scalable, directed differentiation of high-quality RPE cells and LESCs. The two clinically relevant cell types are generated with simple inductive modification of the same basal method, followed by adherent culture, passaging, and cryobanking.
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Meri Vattulainen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Alexandra Mikhailova
- Department of Ophthalmology, SILK, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Finnish Federation of the Visually Impaired, Helsinki, Finland
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|