1
|
Liu H, Xie Y, An X, Xu D, Cai S, Chu C, Liu G. Advances in Novel Diagnostic Techniques for Alveolar Echinococcosis. Diagnostics (Basel) 2025; 15:585. [PMID: 40075832 PMCID: PMC11898896 DOI: 10.3390/diagnostics15050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alveolar echinococcosis (AE), caused by the larval stage of the tapeworm Echinococcus multilocularis, is a serious parasitic disease that presents significant health risks and challenges for both patients and healthcare systems. Accurate and timely diagnosis is essential for effective management and improved patient outcomes. This review summarizes the latest diagnostic methods for AE, focusing on serological tests and imaging techniques such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT). Each imaging modality has its strengths and limitations in detecting and characterizing AE lesions, such as their location, size, and invasiveness. US is often the first-line method due to its non-invasiveness and cost-effectiveness, but it may have limitations in assessing complex lesions. CT provides detailed anatomical information and is particularly useful for assessing bone involvement and calcification. MRI, with its excellent soft tissue contrast, is superior for delineating the extent of AE lesions and their relationship to adjacent structures. PET/CT combines functional and morphological imaging to provide insights into the metabolic activity of lesions, which is valuable for monitoring treatment response and detecting recurrence. Overall, this review emphasizes the importance of a multifaceted diagnostic approach that combines serological and imaging techniques for accurate and early AE diagnosis, which is crucial for effective management and improved patient outcomes.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Nuclear Medicine, School of Public Health, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Yijia Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shundong Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Zhai S, Yang Y, Zhou Y, Lai Q, Li K, Liu S, Li W, Gao F, Guan J. Echinococcus granulosus-Induced Liver Damage Through Ferroptosis in Rat Model. Cells 2025; 14:328. [PMID: 40072057 PMCID: PMC11898441 DOI: 10.3390/cells14050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
(1) Background: Cystic echinococcosis (CE) is an Echinococcus granulosus-induced worldwide parasitic zoonosis and is a recognized public health and socio-economic concern. The liver is the major target organ for CE's infective form protoscolex (PSCs), which causes serious liver damage and endangers the host's life. Reports show that PSC infection causes liver cell Fe2+ metabolism disorder and abnormal deposition of Fe2+ in liver cells and results in liver cell death. However, whether PSC-induced liver cell death is associated with ferroptosis remains to be clarified. (2) Methods: Using both an in vivo rat model and an in vitro co-culture of PSCs and the cell system, we studied the histopathological progress of PSCs infection and the cytopathogenesis of PSC-induced cell death in the liver. Hepatic-injury-related ferroptosis signaling pathways were identified by proteomics analysis at various stages of PSCs infection, and physiological and the biochemical indexes and expression of pathway proteins related to hepatic ferroptosis were studied. Ferrostatin-1, a ferroptosis inhibitor, was employed for in vivo interference with early protoscolices infection in rats, and the effects of the inhibition of hepatocyte ferroptosis on hepatocyte injury and the generation of fibrotic cysts were investigated. Additionally, PSCs were exposed to in vitro co-culture with BRL, a rat hepatocyte line, to clarify the direct influences of PSCs on BRL ferroptosis. (3) Results: The results of our in vivo studies revealed that PSCs infection induced Fe2+ enrichment in liver cells surrounding the PSCs cysts, cellular oxidation, and liver tissue damage along with the prolongation of PSCs parasitism. The results of our in vitro studies verified the ability of PSCs to directly induce ferroptosis, the formation of fibrotic cysts, and alteration of the iron metabolism of liver cells. The analysis of KEGG signaling pathways revealed that ferroptosis- and ROS-related pathways were significantly induced with PSCs infection. Using Ferrostatin-1 effectively blocked ferroptosis, reversed Fe2+ content, reduced liver cell oxidation, and reduced PSC-induced fibrosis cysts. (4) Conclusions: Our study reveals the histopathological progress of PSC infection and the cytopathogenesis of PSC-induced ferroptosis. Ferrostatin-1 effectively blocked PSCs infection and PSC-induced cell death in vivo and in vitro. Accordingly, the inhibition of PSC-induced hepatocyte ferroptosis may be an effective method in the control of Echinococcus granulosus infection and should be seriously considered in clinical studies.
Collapse
Affiliation(s)
- Shaohua Zhai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.Z.); (F.G.)
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Yueqi Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Yang Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Qianqian Lai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Kunlei Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Songhan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Weilu Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (Y.Z.); (Q.L.); (K.L.); (S.L.); (W.L.)
| | - Feng Gao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.Z.); (F.G.)
| | - Jiyu Guan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (S.Z.); (F.G.)
| |
Collapse
|
3
|
Xiong X, Li J, Gao D, Sheng Z, Zheng H, Liu W. Cell-Membrane Biomimetic Indocyanine Green Liposomes for Phototheranostics of Echinococcosis. BIOSENSORS 2022; 12:311. [PMID: 35624612 PMCID: PMC9138668 DOI: 10.3390/bios12050311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 05/05/2023]
Abstract
Echinococcosis is an important zoonotic infectious disease that seriously affects human health. Conventional diagnosis of echinococcosis relies on the application of large-scale imaging equipment, which is difficult to promote in remote areas. Meanwhile, surgery and chemotherapy for echinococcosis can cause serious trauma and side effects. Thus, the development of simple and effective treatment strategies is of great significance for the diagnosis and treatment of echinococcosis. Herein, we designed a phototheranostic system utilizing neutrophil-membrane-camouflaged indocyanine green liposomes (Lipo-ICG) for active targeting the near-infrared fluorescence diagnosis and photothermal therapy of echinococcosis. The biomimetic Lipo-ICG exhibits a remarkable photo-to-heat converting performance and desirable active-targeting features by the inflammatory chemotaxis of the neutrophil membrane. In-vitro and in-vivo studies reveal that biomimetic Lipo-ICG with high biocompatibility can achieve in-vivo near-infrared fluorescence imaging and phototherapy of echinococcosis in mouse models. Our research is the first to apply bionanomaterials to the phototherapy of echinococcosis, which provides a new standard for the convenient and noninvasive detection and treatment of zoonotic diseases.
Collapse
Affiliation(s)
- Xinxin Xiong
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (X.X.); (J.L.)
| | - Jun Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (X.X.); (J.L.)
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (D.G.); (Z.S.); (H.Z.)
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (D.G.); (Z.S.); (H.Z.)
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (D.G.); (Z.S.); (H.Z.)
| | - Wenya Liu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China; (X.X.); (J.L.)
| |
Collapse
|
4
|
Ghani MU, Wu X, Fajardo LL, Jing Z, Wong MD, Zheng B, Omoumi F, Li Y, Yan A, Jenkins P, Hillis SL, Linstroth L, Liu H. Development and preclinical evaluation of a patient-specific high energy x-ray phase sensitive breast tomosynthesis system. Med Phys 2021; 48:2511-2520. [PMID: 33523479 DOI: 10.1002/mp.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This article reports the first x-ray phase sensitive breast tomosynthesis (PBT) system that is aimed for direct translation to clinical practice for the diagnosis of breast cancer. PURPOSE To report the preclinical evaluation and comparison of the newly built PBT system with a conventional digital breast tomosynthesis (DBT) system. METHODS AND MATERIALS The PBT system is developed based on a comprehensive inline phase contrast theoretical model. The system consists of a polyenergetic microfocus x-ray source and a flat panel detector mounted on an arm that is attached to a rotating gantry. It acquires nine projections over a 15° angular span in a stop-and-shoot manner. A dedicated phase retrieval algorithm is integrated with a filtered back-projection method that reconstructs tomographic slices. The American College of Radiology (ACR) accreditation phantom, a contrast detail (CD) phantom and mastectomy tissue samples were imaged at the same glandular dose levels by both the PBT and a standard of care DBT system for image quality characterizations and comparisons. RESULTS The PBT imaging scores with the ACR phantom are in good to excellent range and meet the quality assurance criteria set by the Mammography Quality Standard Act. The CD phantom image comparison and associated statistical analyses from two-alternative forced-choice reader studies confirm the improvement offered by the PBT system in terms of contrast resolution, spatial resolution, and conspicuity. The artifact spread function (ASF) analyses revealed a sizable lateral spread of metal artifacts in PBT slices as compared to DBT slices. Signal-to-noise ratio values for various inserts of the ACR and CD phantoms further validated the superiority of the PBT system. Mastectomy sample images acquired by the PBT system showed a superior depiction of microcalcifications vs the DBT system. CONCLUSION The PBT imaging technology can be clinically employed for improving the accuracy of breast cancer screening and diagnosis.
Collapse
Affiliation(s)
- Muhammad U Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Xizeng Wu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Laurie L Fajardo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | | | - Molly D Wong
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Bin Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Farid Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuhua Li
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Aimin Yan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Peter Jenkins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Stephen L Hillis
- Department of Radiology and Biostatistics, University of Iowa, Iowa City, IA, 52242, USA
| | - Laura Linstroth
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Hong Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
5
|
Yu Q, Xiao N, Han S, Tian T, Zhou XN. Progress on the national echinococcosis control programme in China: analysis of humans and dogs population intervention during 2004-2014. Infect Dis Poverty 2020; 9:137. [PMID: 33008476 PMCID: PMC7532088 DOI: 10.1186/s40249-020-00747-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background A national control program for echinococcosis has been in effect since 2005 in China. This program has applied a comprehensive strategy, and good control results have been achieved. Human echinococcosis prevalence rate decrease from 1.08% in 2004 to 0.24% in 2012. The objective of this study is focusing on assessment of the programme with two indices, including patient treatment and registered dogs deworming, in endemic areas of echincoccosis control over the period of 10 years (2004–2014) in China. Methods We established the database including demography at county and township levels with coverage for ten provinces and autonomous regions of China in this study. We using methods of epidemiological descriptive, instead the expectation-maximization for missing value filling for grouping available patients into those subjected to surgery and those receiving drug treatment after population screening and the dogs population after registered by deworming. We performed Microsoft Excel software and SPSS software on the results as percentages with the corresponding 95% confidence intervals (95% CIs). We also statistically analyzed the economics data on patient treatment and dogs deworming after the corresponding discount with annual bank interest rates (USD 1 = CNY 6.5, bank discount average changes of 2.3–3.3%). Results During 2004–2014, the grant total average rate of surgical patient (after surgical operation) treatment had increased with 32.4% and with 81.3% for medical treatment with albendazole. Meanwhile, it increased by 58.6% for the deworming of registered dog since 2007. The accumulated costs amounted to USD 27.03 million after discount for patients and registered dog treatment, which is 1/4 of the total accumulated financial inputs (USD 110.67 million from the Chinese Government). Since the implementation of the national program, it has increased 57 times with respect to the annual financial inputs (costs) and 368 times with respect to all accumulated financial inputs (costs). Conclusions This study showed that in endemic areas, patient diagnosis and management, dog management and treatment over this period helped reduce the parasite load to control the disease. More attention should be paid to controlling wild canines during the ongoing program period and sustainable follow-up evaluations are crucial for success and continued implementation of the national program.
Collapse
Affiliation(s)
- Qing Yu
- Department of Echinococcosis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Ning Xiao
- Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Shuai Han
- Department of Echinococcosis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.,Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Tian Tian
- Chinese Center for Tropical Diseases Research, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Xiao-Nong Zhou
- Chinese Center for Tropical Diseases Research, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.
| |
Collapse
|
6
|
Ghani MU, Gregory B, Omoumi F, Zheng B, Yan A, Wu X, Liu H. Impact of a single distance phase retrieval algorithm on spatial resolution in X-ray inline phase sensitive imaging. BIOMEDICAL SPECTROSCOPY AND IMAGING 2019; 8:29-40. [PMID: 31788419 PMCID: PMC6883648 DOI: 10.3233/bsi-190186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A single-projection based phase retrieval method based on the phase attenuation duality principle (PAD) was used to compare the spatial resolution of the acquired phase sensitive and PAD processed phase retrieved images. An inline phase sensitive prototype was used to acquire the phase sensitive images. The prototype incorporates a micro-focus x-ray source and a flat panel detector with a 50 μm pixel pitch. A phantom composed of a 2 cm thick 50-50 adipose-glandular mimicking slab sandwiched with a 0.82 cm thick slanted PMMA sharp edge was used. Phase sensitive image of the phantom was acquired at 120 kV, 3.35 mAs with a 16 μm tube focal spot size under a geometric magnification (M) of 2.5. The PAD based method was applied to the acquired phase sensitive image for the retrieval of phase values. With necessary data processing, modulation transfer function (MTF) curves were determined for the estimation and comparison of the spatial resolution. The PAD processed phase retrieved values of the phantom were in good agreement with the theoretically calculated values. Phase sensitive images showed higher spatial resolution at all spatial frequencies compared to the phase retrieved images. It was noted that the high-frequency signal components in the retrieved image were suppressed that resulted in lower MTF values. When compared to the phase sensitive image, the cutoff resolution (10% MTF) for phase retrieved image dropped 32% from 15.6 lp/mm (32μm) to 10.6 lp/mm (47μm). The resolution offered by this phase sensitive prototype is radiographically enough to detect breast cancer.
Collapse
Affiliation(s)
- Muhammad. U. Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA
| | - Bradley Gregory
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA
| | - Farid Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA
| | - Bin Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA
| | - Aimin Yan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Xizeng Wu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Hong Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA
| |
Collapse
|
7
|
Liu H, Ji X, Ma Y, Du G, Fu Y, Abudureheman Y, Liu W. Quantitative characterization and diagnosis via hard X-ray phase-contrast microtomography. Microsc Res Tech 2018; 81:1173-1181. [PMID: 30238563 DOI: 10.1002/jemt.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022]
Abstract
Nondestructive three-dimensional (3D) micromorphological imaging technique is essential for hepatic alveolar echinococcosis (HAE) disease to determine its damage level and early diagnosis, assess relative drug therapy and optimize treatment strategies. However, the existing morphological researches of HAE mainly depend on the conventional CT, MRI, or ultrasound in hospitals, unfortunately confronting with the common limit of imaging resolution and sensitivity, especially for tiny or early HAE lesions. Now we presented a phase-retrieval-based synchrotron X-ray phase computed tomography (PR-XPCT) with striking contrast-to-noise ratio and high-density resolution to visualize the HAE nondestructive 3D structures and quantitatively segment different pathological characteristics of HAE lesions without staining process at the micrometer scale. Our experimental results of the HAE rat models at early and developed pathological stages and albendazole liposome (L-ABZ) therapeutic feeding models successfully exhibited the different HAE pathological 3D morphological and microstructural characteristics with excellent contrast and high resolution, demonstrating its availability and superiority. Moreover, we achieved the quantitative statistics and analysis of the pathological changes of HAE lesions at different stages and L-ABZ therapeutic evaluation, helpful to understanding the development and drug treatment of HAE disease. The PR-XPCT-based quantitative segmentation and characterization has a great potential in detection and analysis of soft tissue pathological changes, such as different tumors.
Collapse
Affiliation(s)
- Huiqiang Liu
- College of Medical Engineering and Technology, Xinjiang Medical University, China
| | - Xuewen Ji
- Hepatobiliary Surgery, First Affiliated Hospital, Xinjiang Medical University, China
| | - Yan Ma
- College of Medical Engineering and Technology, Xinjiang Medical University, China
| | - Guohao Du
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Fu
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yibanu Abudureheman
- Imaging Center, First Affiliated Hospital, Xinjiang Medical University, China
| | - Wenya Liu
- Imaging Center, First Affiliated Hospital, Xinjiang Medical University, China
| |
Collapse
|
8
|
Ghani MU, Wong MD, Omoumi FH, Zheng B, Fajardo LL, Yan A, Wu X, Liu H. Detectability comparison of simulated tumors in digital breast tomosynthesis using high-energy X-ray inline phase sensitive and commercial imaging systems. Phys Med 2018; 47:34-41. [PMID: 29609816 DOI: 10.1016/j.ejmp.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/22/2018] [Accepted: 02/15/2018] [Indexed: 11/28/2022] Open
Abstract
This study compared the detectability of simulated tumors using a high-energy X-ray inline phase sensitive digital breast tomosynthesis (DBT) prototype and a commercial attenuation-based DBT system. Each system imaged a 5-cm thick modular breast phantom with 50-50 adipose-glandular percentage density containing contrast-detail (CD) test objects to simulate different tumor sizes. A commercial DBT system acquired 15 projection views over 15 degrees (15d-15p) was used to acquire the attenuation-based projection views and to reconstruct the conventional DBT slices. Attenuation-based projection views were acquired at 32 kV, 46 mAs with a mean glandular dose (Dg) of 1.6 mGy. For acquiring phase sensitive projection views, the prototype utilized two acquisition geometries: 11 projection views were acquired over 15 degrees (15d-11p), and 17 projection views were acquired over 16 degrees (16d-17p) at 120 kV, 5.27 mAs with 1.51 mGy under the magnification (M) of 2. A phase retrieval algorithm based on the phase-attenuation duality (PAD) was applied to each projection view, and a modified Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct the phase sensitive DBT slices. Simulated tumor margins were rated as more conspicuous and better visualized for both phase sensitive acquisition geometries versus conventional DBT imaging. The CD curves confirmed the improvement in both contrast and spatial resolutions with the phase sensitive DBT imaging. The superiority of the phase sensitive DBT imaging was further endorsed by higher contrast to noise ratio (CNR) and figure-of-merit (FOM) values. The CNR improvements provided by the phase sensitive DBT prototype were sufficient to offset the noise reduction provided by the attenuation-based DBT imaging.
Collapse
Affiliation(s)
- Muhammad U Ghani
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Molly D Wong
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Farid H Omoumi
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Bin Zheng
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Laurie L Fajardo
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA.
| | - Aimin Yan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | - Xizeng Wu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | - Hong Liu
- Advanced Medical Imaging Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|