1
|
Soni S, De UK, Gandhar JS, Sarkar VK, Saminathan M, Agarwal RK, Patra MK, Singh BR, Kumar A, Bandyopadhyay S. Diflunisal attenuates acute inflammatory responses through inhibition of NF-κB signaling pathway in Staphylococcus aureus-induced mastitis of lactating mouse model. Microb Pathog 2024; 199:107260. [PMID: 39736343 DOI: 10.1016/j.micpath.2024.107260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The cure rate of Staphylococcus aureus mastitis by conventional antibiotic therapy is very poor. Diflunisal (DIF), a difluorophenol derivative of salicylic acid, is reported to have strong anti-bacterial and anti-inflammatory effects against S. aureus infection. The present study aimed to evaluate the potential therapeutic effect of DIF administration against S. aureus-induced mastitis in mouse model by assessing the bacterial load, inflammation and histopathological changes in mammary gland. Eighteen lactating Swiss albino mice were divided into four groups: uninfected control, S. aureus-induced mastitis model, antibiotic (ceftriaxone)-treatment and diflunisal (DIF)-treatment. In S. aureus-induced mastitis mice, markedly increased bacterial load, myeloperoxidase, NF-κB and nitric oxide (NO) levels and up regulations of IL-1β, NF-κB and TNF-α mRNA expressions in mammary tissues with severe necrosis, marked infiltration of neutrophils and fibrosis in histopathology were noticed. Intramammary administration of DIF in S. aureus-induced mastitis mice showed a significant reduction in bacterial load, myeloperoxidase, NF-κB and NO concentrations in mammary tissues. The DIF treatment also suppressed the inflammatory NF-κB signaling in the inflamed mammary tissues by downregulation of IL-1β, NF-κB and TNF-α mRNA expressions. Further, the histopathology of mammary tissues showed mild necrosis with mild inflammatory cells infiltration, few bacterial colonies, moderate fibrosis, and marked regenerative changes with near to normal histological architecture. The findings of the study provide the evidence of therapeutic potential of DIF in S. aureus-induced mastitis by promising antibacterial and anti-inflammatory activities along with ameliorative impact against the histopathological alterations in mammary tissues.
Collapse
Affiliation(s)
- Srishti Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India.
| | - Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Varun Kumar Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - M Saminathan
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India.
| | - Ravi Kant Agarwal
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Bhoj Raj Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, 700037, West Bengal, India
| |
Collapse
|
2
|
Rahman MM, Siddique N, Hasnat S, Rahman MT, Rahman M, Alam M, Das ZC, Islam T, Hoque MN. Genomic insights into the probiotic potential and genes linked to gallic acid metabolism in Pediococcus pentosaceus MBBL6 isolated from healthy cow milk. PLoS One 2024; 19:e0316270. [PMID: 39724288 DOI: 10.1371/journal.pone.0316270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Pediococcus pentosaceus is well known for its probiotic properties, including roles in improving health, antimicrobial production, and enhancing fermented food quality. This study aimed to comprehensively analyze the whole genome of P. pentosaceus MBBL6, isolated from healthy cow milk, to assess its probiotic and antimicrobial potentials. P. pentosaceus MBBL6, isolated from a healthy cow milk at BSMRAU dairy farm, Gazipur, Bangladesh, underwent comprehensive genomic analysis, including whole genome sequencing, assembly, annotation, phylogenetic comparison, and assessment of metabolic pathways and secondary metabolites. Antimicrobial efficacy was evaluated through in-vitro and in-vivo studies, alongside in-silico exploration for potential mastitis therapy. We predicted 1,906 genes and 204 SEED sub-systems involved in carbohydrate metabolism and vitamin B complex biosynthesis, with a focus on lactose metabolism in MMBL6. Notably, 43 putative carbohydrate-active enzyme genes, including lysozymes, suggest the ability of MBBL6 for carbohydrate biotransformation and antimicrobial activity. The genome also revealed primary metabolic pathways for arginine and gallic acid metabolism and secondary metabolite gene clusters, including T3PKS and RiPP-like regions. Importantly, two bacteriocin biosynthesis gene clusters namely bovicin_255_variant and penocin_A, were identified in MBBL6. The safety assessment of MBBL6 genome revealed no virulence genes and a low pathogenicity score (0.196 out of 1.0). Several genes related to survival in gastrointestinal tract and colonization were also identified. Furthermore, MBBL6 exhibited susceptibility to a wide range of antibiotics in-vitro, and effectively suppressed mastitis pathogens in an in-vivo mouse mastitis model trial. The observed bacteriocin, particularly bovicin, demonstrated the ability to disrupt the function of an essential protein, Rho factor of mastitis pathogens by blocking transcription termination process. Taken together, our in-depth genomic analysis underscores the metabolic versatility, safety profile, and antimicrobial potential of P. pentosaceus MBBL6, suggesting its promise for applications in therapeutics, bioremediation, and biopreservation.
Collapse
Affiliation(s)
- Md Morshedur Rahman
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naim Siddique
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Soharth Hasnat
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Tanvir Rahman
- Faculty of Veterinary Sciences, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mustafizur Rahman
- iccdr'b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Munirul Alam
- iccdr'b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ziban Chandra Das
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
3
|
Suriyasathaporn W, Kongkaew A, Intanon M, Srithanasuwan A, Saipinta D, Pangprasit N, Thongtharb A, Chuasakhonwilai A, Chaisri W. Non- aureus Staphylococci Cause the Spontaneous Cure or Persistent Infection of Major Bovine Mastitis Pathogens in the Murine Mammary Glands. Animals (Basel) 2024; 14:3526. [PMID: 39682491 DOI: 10.3390/ani14233526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The microbial ecology in mastitis involves the interactions between bacteria and the mammary gland environment. Poor mastitis control, for which understanding these microbial relationships is crucial, increases the risk of mastitis and co-infections. The aim of this study was to determine the pathogenesis and bacterial ecology of murine mammary glands following intramammary infection (IMI) with S. aureus (AU), S. agalactiae (SA), and four isolates of selected non-aureus staphylococci (NAS), as well as co-infections of AU or SA with NAS. Selected NAS demonstrated resistance to growth inhibition after co-culture with AU and SA and were proven to be protective in vitro against AU and SA. Both single infections and co-infections of AU, SA, two selected isolates of S. hominis (NAS1 and NAS2), and two selected isolates of S. chromogens (NAS3 and NAS4) were injected into the murine mammary glands at 105 CFU/mL. After 72 h of inoculation, the results showed that AU, AU-NAS2, and AU-NAS3 expressed severe inflammation with clinical signs of mastitis. The persistence of AU was found for AU, NAS3, and AU-NAS3, whereas the persistence of SA was found for SA-NAS1, SA-NAS3, and SA-NAS, although single SA could not persist. Interestingly, NAS2 in both the single- and co-IMIs with AU or SA resulted in a spontaneous cure 72 h after the IMI. In conclusion, some NAS have beneficial results because they can eliminate S. aureus and S. agalactiae, but some NAS have negative effects because they can support persistent S. agalactiae infection. These results may be used to explain both the advantages and disadvantages of NAS on farms with poor mastitis control. In addition, the beneficial S. hominis may initiate natural live antibiotics and reduce antibiotic resistance problems.
Collapse
Affiliation(s)
- Witaya Suriyasathaporn
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
- Cambodia Campus, Asian Satellite Campuses Institute, Nagoya Universities, Nagoya 464-8601, Japan
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Intanon
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anyaphat Srithanasuwan
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Duanghathai Saipinta
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppason Pangprasit
- Akkhraratchakumari Veterinary Colleges, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Atigan Thongtharb
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Wasana Chaisri
- School of Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
5
|
Guo M, Zhang Y, Wu L, Xiong Y, Xia L, Cheng Y, Ma J, Wang H, Sun J, Wang Z, Yan Y. Development and mouse model evaluation of a new phage cocktail intended as an alternative to antibiotics for treatment of Staphylococcus aureus-induced bovine mastitis. J Dairy Sci 2024; 107:5974-5987. [PMID: 38522833 DOI: 10.3168/jds.2024-24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Bovine mastitis is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, renewed interest has focused on the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages, vB_SauM_JDYN (JDYN) and vB_SauM_JDF86 (JDF86), were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide temperature and pH range and were almost unaffected in chloroform. In this study, we prepared a phage cocktail (PHC-1) which consisted of a 1:1:1 ratio of JDYN, JDF86, and SLPW (a previously characterized phage). We found that PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. Bovine mammary epithelial cells and lactating mice mastitis models were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.
Collapse
Affiliation(s)
- Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lifei Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yangjing Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lu Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
6
|
Hoque MN, Faisal GM, Das ZC, Sakif TI, Al Mahtab M, Hossain MA, Islam T. Genomic features and pathophysiological impact of a multidrug-resistant Staphylococcus warneri variant in murine mastitis. Microbes Infect 2024; 26:105285. [PMID: 38154518 DOI: 10.1016/j.micinf.2023.105285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Non-aureus staphylococci (NAS) represent a major etiological agent in dairy animal mastitis, yet their role and impact remain insufficiently studied. This study aimed to elucidate the genomic characteristics of a newly identified multidrug-resistant NAS strain, specifically Staphylococcus warneri G1M1F, isolated from murine feces in an experimental mastitis model. Surprisingly, NAS species accounted for 54.35 % of murine mastitis cases, with S. warneri being the most prevalent at 40.0 %. S. warneri G1M1F exhibited resistance to 10 major antibiotics. Whole-genome sequencing established a genetic connection between G1M1F and S. warneri strains isolated previously from various sources including mastitis milk in dairy animals, human feces and blood across diverse geographical regions. Genomic analysis of S. warneri G1M1F unveiled 34 antimicrobial resistance genes (ARGs), 30 virulence factor genes (VFGs), and 278 metabolic features. A significant portion of identified ARGs (64 %) conferred resistance through antibiotic efflux pumps, while VFGs primarily related to bacterial adherence and biofilm formation. Inoculation with G1M1F in mice resulted in pronounced inflammatory lesions in mammary and colon tissues, indicating pathogenic potential. Our findings highlight distinctive genomic traits in S. warneri G1M1F, signifying the emergence of a novel multidrug-resistant NAS variant. These insights contribute to understanding NAS-related mastitis pathophysiology and inform strategies for effective treatment in dairy animals.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh.
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | | | - Mamun Al Mahtab
- Interventional Hepatology Division, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh
| | - M Anwar Hossain
- Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur 1706, Bangladesh
| |
Collapse
|
7
|
Li K, Yang M, Tian M, Jia L, Wu Y, Du J, Yuan L, Li L, Ma Y. The preventive effects of Lactobacillus casei 03 on Escherichia coli-induced mastitis in vitro and in vivo. J Inflamm (Lond) 2024; 21:5. [PMID: 38395896 PMCID: PMC10893599 DOI: 10.1186/s12950-024-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Lactobacillus casei possesses many kinds of bioactivities, such as anti-inflammation and anti-oxidant, and has been applied to treating multiple inflammatory diseases. However, its role in mastitis prevention has remained ambiguous. METHODS This study aimed to examine the mechanisms underlying the preventive effects of L. casei 03 against E. coli- mastitis utilizing bovine mammary epithelial cells (BMECs) and a mouse model. RESULTS In vitro assays revealed pretreatment with L. casei 03 reduced the apoptotic ratio and the mRNA expression levels of IL1β, IL6 and TNFα and suppressed phosphorylation of p65, IκBα, p38, JNK and ERK in the NF-κB signaling pathway and MAPK signaling pathway. Furthermore, in vivo tests indicated that intramammary infusion of L. casei 03 relieved pathological changes, reduced the secretion of IL1β, IL6 and TNFα and MPO activity in the mouse mastitis model. CONCLUSIONS These data suggest that L. casei 03 exerts protective effects against E. coli-induced mastitis in vitro and in vivo and may hold promise as a novel agent for the prevention and treatment of mastitis.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taian, Shandong, China
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, 056038, Handan, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lekai South Street, 071001, Baoding, Hebei, China.
| |
Collapse
|
8
|
Wu F, Xie X, Du T, Jiang X, Miao W, Wang T. Lactococcus lactis, a bacterium with probiotic functions and pathogenicity. World J Microbiol Biotechnol 2023; 39:325. [PMID: 37776350 DOI: 10.1007/s11274-023-03771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Lactococcus lactis (L. lactis) is the primary organism for lactic acid bacteria (LAB) and is a globally recognized safe microorganism for the regulation of the intestinal micro-ecological balance of animals and improving the immune performance of the host. L. lactis is known to play a commercially important role in feed fortification, milk fermentation, and vaccine production, but pathogenic L. lactis has been isolated from many clinical cases in recent years, such as the brain of silver carp with Lactococcosis, the liver and spleen of diseased waterfowl, milk samples and padding materials with cow mastitis, and blood and urine from human patients with endocarditis. In dairy farming, where L. lactis has been used as a probiotic in the past, however, some studies have found that L. lactis can cause mastitis in cows, but the lack of understanding of the pathogenesis of mastitis in cows caused by L. lactis has become a new problem. The main objective of this review is to analyze the increasingly serious clinical mastitis caused by L. lactis and combined with the wide application of L. lactis as probiotics, to comprehensively discuss the characteristics and diversity of L. lactis.
Collapse
Affiliation(s)
- Fan Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinmei Xie
- Elanco (Shanghai)Animal Health Co, Ltd, No.1, Field Middle Road, Wusi Farm, Fengxian District, Shanghai, China
| | - Tao Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodan Jiang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Miao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tiancheng Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
9
|
Kong CY, Yang YQ, Han B, Chen HL, Mao YQ, Huang JT, Wang LS, Li ZM. Fecal microbiome transplant from patients with lactation mastitis promotes mastitis in conventional lactating mice. Front Microbiol 2023; 14:1123444. [PMID: 37125159 PMCID: PMC10140588 DOI: 10.3389/fmicb.2023.1123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Lactation mastitis seriously severely affects the health of lactating females and their infants, yet the underlying causes of clinical lactation mastitis remain unclear. Methods In this study, we used microbiota-humanized mice as a model to investigate the role of gut microbiota in lactation mastitis. We compared the fecal microbiota of lactation mastitis patients and healthy individuals and conducted fecal microbiota transplantation (FMT) experiments in an antibiotic-pretreated mouse model to test whether gut microbes contribute to human lactation mastitis. Results Our results showed that gut microbiota diversity was reduced and dysbiosis was present in lactating mastitis patients. FMT from lactation mastitis patients (M-FMT), but not from healthy individuals (H-FMT), to antibiotic-treated mice resulted in lactation mastitis. The inflammation in mice caused by gut microbiota from lactating mastitis patients appears to be pervasive, as hepatocytes from mice that received feces from lactating mastitis patients showed marked swelling. In addition, serum pro-inflammatory factors, including IL-4, IL-17, MPO, IL-6, IL-1β, and TNF-α, were significantly increased in the M-FMT group. The Firmicutes/Bacteroidetes ratio (F/B), a biomarker of gut dysbiosis, was significantly increased in the M-FMT group. At the phylum level, Actinobacteria were significantly increased, and Verrucomicrobia were significantly decreased in the M-FMT group. At the genus level, Ruminococcus and Faecalibacterium were significantly reduced, while Parabacteroides were significantly increased in the feces of both patients with lactation mastitis and M-FMT mice. Moreover, our study revealed an "amplification effect" on microbiota differences and mastitis disease following human-to-mouse FMT. Conclusion Collectively, our findings demonstrate that the gut microbiota in lactating mastitis patients is dysbiotic and contributes to the pathogenesis of mastitis.
Collapse
Affiliation(s)
- Chao-Yue Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi-Qin Yang
- Traditional Chinese Medicine Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yu-Qin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jia-Ting Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Zhan-Ming Li,
| |
Collapse
|
10
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
11
|
Li K, Yang M, Tian M, Jia L, Du J, Wu Y, Li L, Yuan L, Ma Y. Lactobacillus plantarum 17-5 attenuates Escherichia coli-induced inflammatory responses via inhibiting the activation of the NF-κB and MAPK signalling pathways in bovine mammary epithelial cells. BMC Vet Res 2022; 18:250. [PMID: 35764986 PMCID: PMC9238091 DOI: 10.1186/s12917-022-03355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is one of the most prevalent diseases and causes considerable economic losses in the dairy farming sector and dairy industry. Presently, antibiotic treatment is still the main method to control this disease, but it also brings bacterial resistance and drug residue problems. Lactobacillus plantarum (L. plantarum) is a multifunctional probiotic that exists widely in nature. Due to its anti-inflammatory potential, L. plantarum has recently been widely researched in complementary therapies for various inflammatory diseases. In this study, the apoptotic ratio, the expression levels of various inflammatory mediators and key signalling pathway proteins in Escherichia coli-induced bovine mammary epithelial cells (BMECs) under different doses of L. plantarum 17–5 intervention were evaluated. Results The data showed that L. plantarum 17–5 reduced the apoptotic ratio, downregulated the mRNA expression levels of TLR2, TLR4, MyD88, IL1β, IL6, IL8, TNFα, COX2, iNOS, CXCL2 and CXCL10, and inhibited the activation of the NF-κB and MAPK signalling pathways by suppressing the phosphorylation levels of p65, IκBα, p38, ERK and JNK. Conclusions The results proved that L. plantarum 17–5 exerted alleviative effects in Escherichia coli-induced inflammatory responses of BMECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03355-9.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
12
|
Afroj S, Brannen AD, Nasrin S, Al Mouslem A, Hathcock T, Maxwell H, Rasmussen-Ivey CR, Sandage MJ, Davis EW, Panizzi P, Wang C, Liles MR. Bacillus velezensis AP183 Inhibits Staphylococcus aureus Biofilm Formation and Proliferation in Murine and Bovine Disease Models. Front Microbiol 2021; 12:746410. [PMID: 34690995 PMCID: PMC8533455 DOI: 10.3389/fmicb.2021.746410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing frequency of S. aureus antimicrobial resistance has spurred interest in identifying alternative therapeutants. We investigated the S. aureus-inhibitory capacity of B. velezensis strains in mouse and bovine models. Among multiple B. velezensis strains that inhibited S. aureus growth in vitro, B. velezensis AP183 provided the most potent inhibition of S. aureus proliferation and bioluminescence in a mouse cutaneous wound (P = 0.02). Histology revealed abundant Gram-positive cocci in control wounds that were reduced in B. velezensis AP183-treated tissues. Experiments were then conducted to evaluate the ability of B. velezensis AP183 to prevent S. aureus biofilm formation on a tracheostomy tube substrate. B. velezensis AP183 could form a biofilm on a tracheostomy tube inner cannula substrate, and that this biofilm was antagonistic to S. aureus colonization. B. velezensis AP183 was also observed to inhibit the growth of S. aureus isolates originated from bovine mastitis cases. To evaluate the inflammatory response of mammary tissue to intramammary inoculation with B. velezensis AP183, we used high dose and low dose inocula in dairy cows. At the high dose, a significant increase in somatic cell count (SCC) and clinical mastitis was observed at all post-inoculation time points (P < 0.01), which resolved quickly compared to S. aureus-induced mastitis; in contrast, the lower dose of B. velezensis AP183 resulted in a slight increase of SCC and no clinical mastitis. In a subsequent experiment, all mammary quarters in four cows were induced to have grade 1 clinical mastitis by intramammary inoculation of a S. aureus mastitis isolate; following mastitis induction, eight quarters were treated with B. velezensis AP183 and milk samples were collected from pretreatment and post-treatment samples for 9 days. In groups treated with B. velezensis AP183, SCC and abundance of S. aureus decreased with significant reductions in S. aureus after 3 days post-inoculation with AP183 (P = 0.04). A milk microbiome analysis revealed significant reductions in S. aureus relative abundance in the AP183-treated group by 8 days post-inoculation (P = 0.02). These data indicate that B. velezensis AP183 can inhibit S. aureus biofilm formation and its proliferation in murine and bovine disease models.
Collapse
Affiliation(s)
- Sayma Afroj
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Shamima Nasrin
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Abdulaziz Al Mouslem
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Terri Hathcock
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Herris Maxwell
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, Auburn, AL, United States
| | - Edward W Davis
- Department of Mechanical Engineering, Auburn University, Auburn, AL, United States
| | - Peter Panizzi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Chengming Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
13
|
Wang Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Cheng Y, Ma J, Wang H, Sun J, Yan Y. Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:689770. [PMID: 34178726 PMCID: PMC8226249 DOI: 10.3389/fcimb.2021.689770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that causes a variety of infections in humans and animals. Due to the inappropriate use of antibiotics, multi-drug resistant (MDR) P. aeruginosa strains have emerged and are prevailing. In recent years, cow mastitis caused by MDR P. aeruginosa has attracted attention. In this study, a microbial community analysis revealed that P. aeruginosa could be a cause of pathogen-induced cow mastitis. Five MDR P. aeruginosa strains were isolated from milk diagnosed as mastitis positive. To seek an alternative antibacterial agent against MDR, P. aeruginosa, a lytic phage, designated vB_PaeS_PAJD-1 (PAJD-1), was isolated from dairy farm sewage. PAJD-1 was morphologically classified as Siphoviridae and was estimated to be about 57.9 kb. Phage PAJD-1 showed broad host ranges and a strong lytic ability. A one-step growth curve analysis showed a relatively short latency period (20 min) and a relatively high burst size (223 PFU per infected cell). Phage PAJD-1 remained stable over wide temperature and pH ranges. Intramammary-administered PAJD-1 reduced bacterial concentrations and repaired mammary glands in mice with mastitis induced by MDR P. aeruginosa. Furthermore, the cell wall hydrolase (termed endolysin) from phage PAJD-1 exhibited a strong bacteriolytic and a wide antibacterial spectrum against MDR P. aeruginosa. These findings present phage PAJD-1 as a candidate for phagotherapy against MDR P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuanping Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Xinwei Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
14
|
Nagahata H, Moriyama A, Sawada C, Asai Y, Kokubu C, Gondaira S, Higuchi H. Innate immune response of mammary gland induced by intramammary infusion of Bifidobacterium breve in lactating dairy cows. J Vet Med Sci 2020; 82:1742-1749. [PMID: 33071254 PMCID: PMC7804045 DOI: 10.1292/jvms.20-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate innate immune responses of mammary glands induced by intramammary infusion of Bifidobacterium breve in dairy
cows. Somatic cell counts in quarters of cows showed a marked increase following B. breve infusion on days 1 and 2. Opsonized-stimulated
chemiluminescence response in quarter milk was significantly (P<0.05) increased by B. breve infusion on days 1 to 3
compared to that of pre-infusion. Lactoferrin concentrations in B. breve-infused quarter milk increased significantly
(P<0.05) on days 2 to 4 and 6 compared to those of pre-infusion. IgG and IgA concentrations in B. breve-infused quarters
significantly (P<0.05) increased on days 2 to 4 for IgG and days 3, 4, 6 and 8 for IgA compared to those of pre-infusion. Interleukin
(IL)-1β and IL-8 mRNA levels in somatic cells from B. breve-infused quarters were significantly (P<0.05) upregulated on day
1 compared to those on days 0 and 14. Conversely, IL-6 mRNA levels in somatic cells from B. breve-infused quarters on days 0, 1 and 14 and
NF-κB mRNA levels on day 0 were significantly (P<0.05) down-regulated compared to those of control. IL-1β, tumor necrosis
factor (TNF)-α and IL-6 concentrations increased on days 1, 3 and 7 after B. breve infusion in quarters. Intramammary infusion of B.
breve (3 × 109 cfu) induces a massive influx of leukocytes and enhances innate immune response in mammary glands. This event may
contribute to the enhancing host defense in the mammary gland.
Collapse
Affiliation(s)
- Hajime Nagahata
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.,Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Ikoinooka 1-3, Imabari, Ehime 794-8555, Japan
| | - Ayumi Moriyama
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Chika Sawada
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yukiko Asai
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Chihiro Kokubu
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
15
|
Nagahata H, Mukai T, Natsume Y, Okuda M, Ando T, Hisaeda K, Gondaira S, Higuchi H. Effects of intramammary infusion of Bifidobacterium breve on mastitis pathogens and somatic cell response in quarters from dairy cows with chronic subclinical mastitis. Anim Sci J 2020; 91:e13406. [PMID: 32578314 DOI: 10.1111/asj.13406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The present study assessed the effects of intramammary infusion of Bifidobacterium breve (B. breve) on mastitis-causing pathogens and on the somatic cell counts (SCC) in lactating cows with chronic subclinical mastitis. The bacteriological cure rates of 42 quarters from 42 cows infected with Staphylococcus aureus, Corynebacterium bovis, coagulase-negative staphylococci, and environmental streptococci were 18.2% (2/11), 14.3% (1/7), 58.8% (10/17), and 28.6% (2/7), respectively, on day 14 after B. breve infusion. In a second trial, B. breve was infused into 18 quarters from 18 cows with chronic subclinical mastitis from which pathogens had not been isolated; the rates of quarters showing SCC > 50 × 104 cells/ml prior to B. breve infusion that decreased to < 30 × 104 cells/ml after infusion were significantly (p < .01) increased to 61.1% (11/18) on day 14 compared to that prior to infusion (0/18). The intramammary infusion of B. breve appears to be a non-antibiotic approach for elimination of minor pathogens and decreasing SCC in quarters with chronic subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Hajime Nagahata
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.,Large Animal Medicine Unit, Department of Veterinary Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takuma Mukai
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yo Natsume
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Miyuki Okuda
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tatsuya Ando
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Keiichi Hisaeda
- Large Animal Medicine Unit, Department of Veterinary Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
16
|
Evaluation of the Immunomodulatory Ability of Lactic Acid Bacteria Isolated from Feedlot Cattle Against Mastitis Using a Bovine Mammary Epithelial Cells In Vitro Assay. Pathogens 2020; 9:pathogens9050410. [PMID: 32466097 PMCID: PMC7281661 DOI: 10.3390/pathogens9050410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, affects the quality and quantity of milk yield. Mastitis control relies on single or multiple combinations of antibiotic therapy. Due to increasing antibiotic resistance in pathogens, the intramammary infusion of lactic acid bacteria (LAB) has been considered as a potential alternative to antibiotics for treating and preventing bovine mastitis through the improvement of the host immunity. Probiotic effects are a strain-dependent characteristic; therefore, candidate LAB strains have to be evaluated efficiently to find out the ones with the best potential. Here, we investigated LAB strains originally isolated from feedlot cattle’s environment regarding their ability in inducing the Toll-like receptor (TLR)-triggered inflammatory responses in bovine mammary epithelial (BME) cells in vitro. The BME cells were pre-stimulated with the LAB strains individually for 12, 24, and 48 h and then challenged with Escherichia coli-derived lipopolysaccharide (LPS) for 12 h. The mRNA expression of selected immune genes—interleukin 1 alpha (IL-1α), IL-1β, monocyte chemotactic protein 1 (MCP-1), IL-8, chemokine (C-X-C motif) ligand 2 (CXCL2), and CXCL3 were quantified by real-time quantitative PCR (RT-qPCR). Results indicated that pretreatment with some Lactobacillus strains were able to differentially regulate the LPS inflammatory response in BME cells; however, strain-dependent differences were found. The most remarkable effects were found for Lactobacillus acidophilus CRL2074, which reduced the expression of IL-1α, IL-1β, MCP-1, IL-8, and CXCL3, whereas Lactobacillus rhamnosus CRL2084 diminished IL-1β, MCP-1, and IL-8 expression. The pre-stimulation of BME cells with the CRL2074 strain resulted in the upregulated expression of three negative regulators of the TLRs, including the ubiquitin-editing enzyme A20 (also called tumor necrosis factor alpha-induced protein 3, TNFAIP3), single immunoglobin IL-1 single receptor (SIGIRR), and Toll interacting protein (Tollip) after the LPS challenge. The CRL2084 pre-stimulation upregulated only Tollip expression. Our results demonstrated that the L. acidophilus CRL2074 strain possess remarkable immunomodulatory abilities against LPS-induced inflammation in BME cells. This Lactobacillus strain could be used as candidate for in vivo testing due to its beneficial effects in bovine mastitis through intramammary infusion. Our findings also suggest that the BME cells immunoassay system could be of value for the in vitro evaluation of the immunomodulatory abilities of LAB against the inflammation resulting from the intramammary infection with mastitis-related pathogens.
Collapse
|
17
|
Mitra SD, Ganaie F, Bankar K, Velu D, Mani B, Vasudevan M, Shome R, Rahman H, Kumar Ghosh S, Shome BR. Genome-wide analysis of mammary gland shows modulation of transcriptome landscape with alternative splice variants in Staphylococcus aureus mastitis in mice. Gene 2019; 735:144278. [PMID: 31821873 DOI: 10.1016/j.gene.2019.144278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
Epidemiological mapping shows Staphylococcus aureus to be the leading mastitis causing pathogen in India with diverse genetic lineages circulating in the dairy cattle population. We previously reported that endemic clonal strains of S. aureus isolated from subclinical mastitis lead to specific alteration of epigenetic modulators resulting in deviating immune response in intramammary infection mouse model. However, the extent of transcriptome modulation and associated alternative splicing in S. aureus mastitis is poorly understood. Hence, to gain a deeper insight of the extent of modulation of transcriptome landscape, we expanded the study here using high throughput, paired-end RNA sequencing analysis of the mouse mammary gland inoculated with three strains of S. aureus (SA1, SA2, and SA3) possessing specific genotype, virulence and enterotoxin traits. Overall, we detected 35,878 transcripts in S. aureus inoculated mammary gland, 23% more than those annotated in the reference genome. Expression of 20,756 transcripts was > 1 fragment per kilobase of transcript per million mapped fragments and 25.95% of multi-exonic genes were alternatively spliced. We noted Alternative Splicing (AS) events for > 100 immune-related genes. S. aureus infection quantitatively altered AS events in mice mammary gland. Collectively, the majority of differentially expressed significant genes clustered into immune-associated, cell adhesion and metabolic process categories. We observed AS events for 379 transcripts of genes putatively encoding several splicing associated proteins and transcription factors besides inflammatory mediators. The present analysis provides new insights into global transcriptome landscape and AS events in host-defense related genes in response to S. aureus intramammary infection, suggesting the need for studies focusing on multi-target and/or network therapeutics approach to combat mastitis.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Biotechnology, Assam University, Silchar, AS, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, KA, India
| | - Feroze Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Medicine, Division of Pulmonary/Allergy/Critical care, University of Alabama at Birmingham, AL, USA
| | - Kiran Bankar
- Bionivid Technology Pvt. Ltd., Bangalore, KA, India
| | - Dhanikachalam Velu
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Bhuvana Mani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | | | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Habibur Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; International Livestock Research Institute, Pusa, DL, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India.
| |
Collapse
|
18
|
Costa CRM, Feitosa MLT, Rocha AR, Bezerra DO, Leite YKC, Argolo Neto NM, Rodrigues HWS, Júnior AS, Silva AS, Sarmento JLR, Silva LS, Carvalho MAM. Adipose stem cells in reparative goat mastitis mammary gland. PLoS One 2019; 14:e0223751. [PMID: 31639137 PMCID: PMC6804991 DOI: 10.1371/journal.pone.0223751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/29/2019] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells have been widely used in the treatment of various chronic diseases. The objective of this survey was to evaluate the therapeutic and regenerative potential of stem cells from adipose tissue (ASCs) in the milk production recovery repair of tissue injury in mastitis goats treated with antimicrobial agents prior to cell therapy. After the diagnosis of mastitis and treatment with gentamicin, eight lactating goats were selected for cellular and subsequent therapy, physical-chemical analysis of milk, ultrasonographic and histopathological examinations. The ASCs were taken from the subcutaneous fat of a young goat cultivated in vitro, marked with Qdots-655 and injected in the left mammary gland, being the right mammary gland used as the control. After 30 days the ultrasonographic and histopathological analyzes were repeated and, in the first lactation period, the physical-chemical analysis of the milk was reapeated. Before the cellular therapy, the physical-chemical quality of the milk was compromised and the ultrasonographic and histopathological analysis revealed a chronic inflammatory process and fibrous tissue. The marking of the ASCs with Qdots enabled the tracking, by fluorescence microscopy (BX41-OLYMPUS), in the mammary tissue. In the ASCs therapy, cultures showed high cellularity and characteristics favorable to preclinical studies; with the therapy the physical-chemical parameters of the milk, fat, protein, temperature and pH showed significant differences among the groups; five animals treated with ASCs reconstituted the functionality of the gland and the connective tissue reduced in quantity and inflammatory infiltrate cells. ASCs have potential for the possible regeneration of fibrous mastitis lesions in the mammary gland, however, it would be necessary to increase injection time for the histopathological analysis, since the reconstitution of the glandular acini within the assessed period was not finalized. ASCs can be used to reestablish milk production in goat with chronic mastitis repair mammary lesions, with potential to be a promising clinical alternative for animal rehabilitation for productivity.
Collapse
Affiliation(s)
- Clautina R. M. Costa
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Matheus L. T. Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Andressa R. Rocha
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Dayseanny O. Bezerra
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Yulla K. C. Leite
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Napoleão M. Argolo Neto
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Huanna W. S. Rodrigues
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | | | - Adalberto S. Silva
- Biology Department, Federal University of Piauí, Teresina, Piauí, Brazil
| | - José L. R. Sarmento
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Lucilene S. Silva
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| | - Maria A. M. Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Federal University of Piauí (UFPI), Teresina, Piauí, Brazil
| |
Collapse
|
19
|
Catozzi C, Cuscó A, Lecchi C, De Carlo E, Vecchio D, Martucciello A, D’Angelo L, Francino O, Sanchez Bonastre A, Ceciliani F. Impact of intramammary inoculation of inactivated Lactobacillus rhamnosus and antibiotics on the milk microbiota of water buffalo with subclinical mastitis. PLoS One 2019; 14:e0210204. [PMID: 30615691 PMCID: PMC6322744 DOI: 10.1371/journal.pone.0210204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
Water buffalo mastitis represents a major issue in terms of animal health, cost of therapy, premature culling and decreased milk yeld. The emergence of antibiotic resistance has led to investigate strategies to avoid or reduce antibiotics' based therapies, in particular during subclinical mastitis. The use of Generally Regarded As Safe bacteria (GRAS) such as Lactobacillus rhamnosus to restore the unbalance in mammary gland microbiota could provide potential corrective measures. The aim of this study was to investigate the changes in milk microbiota after the intramammary treatment with inactivated cultures of Lactobacillus rhamnosus of mammary gland quarters naturally affected by subclinical mastitis as compared to antibiotic therapy.A number of 43 quarters affected by subclinical mastitis with no signs of clinical inflammation and aerobic culture positive for pathogens were included in the study. The experimental design was as follows: 11 quarters were treated with antibiotics, 15 with inactivated cultures of Lactobacillus rhmnosus and 17 with PBS as negative control, by means of intrammary injection. Samples were collected at eight time points, pre- (T-29, T-21, T-15, T-7, T0 days) and post- treatment (T1, T2, and T6 days). Microbiological culture and Somatic Cell Count (SCC) were perfomed on all the samples, and microbiota was determined on milk samples collected at T0 and T6 by amplifying the V4 region of 16S rRNA gene by PCR and sequencing using next generation sequencing technique. Treatment with Lactobacillus rhamnosus elicited a strong chemotactic response, as determined by a significant increase of leukocytes in milk, but did not change the microbiological culture results of the treated quarters. For what concerns the analysis of the microbiota, the treatment with Lactobacillus rhamnosus induced the modification in relative abundance of some genera such as Pseudomonas and 5-7N15. As expected, antibiotic treatment caused major changes in microbiota structure with an increase of Methylobacterium relative abundance. No changes were detected after PBS treatment. In conclusion, the present findings demonstrated that the in vivo intrammmary treatment with Lactobacillus rhamnosus has a transient pro-inflammatory activity by increasing SCC and is capable to modify the microbiota of milk after six days from inoculation, albeit slightly, even when the bacterial cultures were heat inactivated. Further studies are necessary to assess the potential use of this GRAS as supportive therapy against mastitis.
Collapse
Affiliation(s)
- Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Anna Cuscó
- Vetgenomics. Ed Eureka. PRUAB. Campus UAB, Barcelona, Spain
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy
| | - Domenico Vecchio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy
| | - Alessandra Martucciello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy
| | - Luisa D’Angelo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Armand Sanchez Bonastre
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università di Milano, Milano, Italy
| |
Collapse
|
20
|
Rainard P, Foucras G. A Critical Appraisal of Probiotics for Mastitis Control. Front Vet Sci 2018; 5:251. [PMID: 30364110 PMCID: PMC6191464 DOI: 10.3389/fvets.2018.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023] Open
Abstract
The urge to reduce antimicrobials use in dairy farming has prompted a search for alternative solutions. As infections of the mammary gland is a major reason for antibiotic administration to dairy ruminants, mammary probiotics have recently been presented as a possible alternative for the treatment of mastitis. To assess the validity of this proposal, we performed a general appraisal of the knowledge related to probiotics for mammary health by examining their potential modes of action and assessing the compatibility of these mechanisms with the immunobiology of mammary gland infections. Then we analyzed the literature published on the subject, taking into account the preliminary in vitro experiments and the in vivo trials. Preliminary experiments aimed essentially at exploring in vitro the capacity of putative probiotics, mainly lactic acid bacteria (LABs), to interfere with mastitis-associated bacteria or to interact with mammary epithelial cells. A few studies used LABs selected on the basis of bacteriocin production or the capacity to adhere to epithelial cells to perform in vivo experiments. Intramammary infusion of LABs showed that LABs are pro-inflammatory for the mammary gland, inducing an intense influx of neutrophils into milk during lactation and at drying-off. Yet, their capacity to cure mastitis remains to be established. A few preliminary studies tackle the possibility of using probiotics to interfere with the teat apex microbiota or to prevent the colonization of the teat canal by pathogenic bacteria. From the analysis of the published literature, it appears that currently there is no sound scientific foundation for the use of probiotics to prevent or treat mastitis. We conclude that the prospects for oral probiotics are not promising for ruminants, those for intramammary probiotics should be considered with caution, but that teat apex probiotics deserve further research.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR 1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, Toulouse, France
| |
Collapse
|
21
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Peixe L, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA J 2018; 16:e05315. [PMID: 32625958 PMCID: PMC7009647 DOI: 10.2903/j.efsa.2018.5315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The qualified presumption of safety (QPS) was developed to provide a harmonised generic pre‐evaluation procedure to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by ‘qualifications’ which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS taxonomic units and their qualifications. The Panel clarified that the qualification ‘for production purpose only’ implies the absence of viable cells of the production organism in the final product and can also be applied for food and feed products based on microbial biomass. Between September 2017 and March 2018, the QPS notification list was updated with 46 microorganisms from applications for market authorisation. From these, 28 biological agents already had QPS status, 15 were excluded of the QPS exercise from the previous QPS mandate (10 filamentous fungi and one bacteriophage) or from further evaluations within the current mandate (two notifications of Streptomyces spp. and one of Escherichia coli), and one was excluded where confirmatory data for the risk assessment of a plant protection product (PPP) was requested (Pseudomonas sp.). Three taxonomic units were (re)evaluated: Paracoccus carotinifaciens and Paenibacillus lentus had been previously evaluated in 2008 and 2014, respectively, and were now re‐evaluated within this mandate, and Yarrowia lipolytica, which was evaluated for the first time. P. carotinifaciens and P. lentus cannot be granted QPS status due to lack of scientific knowledge. Y. lipolytica is recommended for QPS status, but only for production purpose.
Collapse
|