1
|
Ono-Minagi H, Nohno T, Takabatake K, Tanaka T, Katsuyama T, Miyawaki K, Wada J, Ibaragi S, Iida S, Yoshino T, Nagatsuka H, Sakai T, Ohuchi H. Histological differences related to autophagy in the minor salivary gland between primary and secondary types of Sjögren's syndrome. BMC Oral Health 2024; 24:1099. [PMID: 39285388 PMCID: PMC11406829 DOI: 10.1186/s12903-024-04869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Some forms of Sjögren's syndrome (SS) follow a clinical course accompanied by systemic symptoms caused by lymphocyte infiltration and proliferation in the liver, kidneys, and other organs. To better understand the clinical outcomes of SS, here we used minor salivary gland tissues from patients and examine their molecular, biological, and pathological characteristics. A retrospective study was performed, combining clinical data and formalin-fixed paraffin-embedded (FFPE) samples from female patients over 60 years of age who underwent biopsies at Okayama University Hospital. We employed direct digital RNA counting with nCounter® and multiplex immunofluorescence analysis with a PhenoCycler™ on the labial gland biopsies. We compared FFPE samples from SS patients who presented with other connective tissue diseases (secondary SS) with those from stable SS patients with symptoms restricted to the exocrine glands (primary SS). Secondary SS tissues showed enhanced epithelial damage and lymphocytic infiltration accompanied by elevated expression of autophagy marker genes in the immune cells of the labial glands. The close intercellular distance between helper T cells and B cells positive for autophagy-associated molecules suggests accelerated autophagy in these lymphocytes and potential B cell activation by helper T cells. These findings indicate that examination of FFPE samples from labial gland biopsies can be an effective tool for evaluating molecular histological differences between secondary and primary SS through multiplexed analysis of gene expression and tissue imaging.
Collapse
Affiliation(s)
- Hitomi Ono-Minagi
- Department of Cytology and Histology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.
- Division of Hospital Dentistry, Central Clinical Department, Okayama University Hospital, Okayama, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America.
| | - Tsutomu Nohno
- Department of Cytology and Histology, Okayama University Medical School, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Hospital, Okayama, Japan
| | - Kohta Miyawaki
- Division of Precision Medicine, Kyushu University School of Medicine, Fukuoka, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayoshi Sakai
- Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Hand AR, Abramson CXG, Dressler KA. Tlx1 regulates acinar and duct development in mouse salivary glands. J Anat 2024; 244:343-357. [PMID: 37837237 PMCID: PMC10780161 DOI: 10.1111/joa.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Tlx1 encodes a transcription factor expressed in several craniofacial structures of developing mice. The role of Tlx1 in salivary gland development was examined using morphological and immunohistochemical analyses of Tlx1 null mice. Tlx1 is expressed in submandibular and sublingual glands but not parotid glands of neonatal and adult male and female C57Bl/6J (Tlx1+/+ ) mice. TLX1 protein was localized to the nuclei of terminal tubule cells, developing duct cells and mesenchymal cells in neonatal submandibular and sublingual glands, and to nuclei of duct cells and connective tissue cells in adult glands. Occasionally, TLX1 was observed in nuclei of epithelial cells in or adjacent to the acini. Submandibular glands were smaller and sublingual glands were larger in size in mutant mice (Tlx1-/- ) compared to wild-type mice. Differentiation of terminal tubule and proacinar cells of neonatal Tlx1-/- submandibular glands was abnormal; expression of their characteristic products, submandibular gland protein C and parotid secretory protein, respectively, was reduced. At 3 weeks postnatally, terminal tubule cells at the acinar-intercalated duct junction were poorly developed or absent in Tlx1-/- mice. Granular convoluted ducts in adult mutant mice were decreased, and epidermal growth factor and nerve growth factor expression were reduced. Along with normal acinar cell proteins, adult acinar cells of Tlx1-/- mice continued to express neonatal proteins and expressed parotid proteins not normally present in submandibular glands. Sublingual gland mucous acinar and serous demilune cell differentiation were altered. Tlx1 is necessary for proper differentiation of submandibular and sublingual gland acinar cells, and granular convoluted ducts. The mechanism(s) underlying Tlx1 regulation of salivary gland development and differentiation remains unknown.
Collapse
Affiliation(s)
- Arthur R Hand
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Cailyn X G Abramson
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Keith A Dressler
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Ono-Minagi H, Nohno T, Serizawa T, Usami Y, Sakai T, Okano H, Ohuchi H. The Germinal Origin of Salivary and Lacrimal Glands and the Contributions of Neural Crest Cell-Derived Epithelium to Tissue Regeneration. Int J Mol Sci 2023; 24:13692. [PMID: 37761995 PMCID: PMC10531458 DOI: 10.3390/ijms241813692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The vertebrate body comprises four distinct cell populations: cells derived from (1) ectoderm, (2) mesoderm, (3) endoderm, and (4) neural crest cells, often referred to as the fourth germ layer. Neural crest cells arise when the neural plate edges fuse to form a neural tube, which eventually develops into the brain and spinal cord. To date, the embryonic origin of exocrine glands located in the head and neck remains under debate. In this study, transgenic TRiCK mice were used to investigate the germinal origin of the salivary and lacrimal glands. TRiCK mice express fluorescent proteins under the regulatory control of Sox1, T/Brachyury, and Sox17 gene expressions. These genes are representative marker genes for neuroectoderm (Sox1), mesoderm (T), and endoderm (Sox17). Using this approach, the cellular lineages of the salivary and lacrimal glands were examined. We demonstrate that the salivary and lacrimal glands contain cells derived from all three germ layers. Notably, a subset of Sox1-driven fluorescent cells differentiated into epithelial cells, implying their neural crest origin. Also, these Sox1-driven fluorescent cells expressed high levels of stem cell markers. These cells were particularly pronounced in duct ligation and wound damage models, suggesting the involvement of neural crest-derived epithelial cells in regenerative processes following tissue injury. This study provides compelling evidence clarifying the germinal origin of exocrine glands and the contribution of neural crest-derived cells within the glandular epithelium to the regenerative response following tissue damage.
Collapse
Affiliation(s)
- Hitomi Ono-Minagi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Tsutomu Nohno
- Department of Cytology and Histology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Takayoshi Sakai
- Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Gao J, Li A, Fujii S, Huang F, Nakatomi C, Nakamura I, Honda H, Kiyoshima T, Jimi E. p130Cas is required for androgen-dependent postnatal development regulation of submandibular glands. Sci Rep 2023; 13:5144. [PMID: 36991029 PMCID: PMC10060253 DOI: 10.1038/s41598-023-32390-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Salivary glands develop through epithelial-mesenchymal interactions and are formed through repeated branching. The Crk-associated substrate protein (p130Cas) serves as an adapter that forms a complex with various proteins via integrin and growth factor signaling, with important regulatory roles in several essential cellular processes. We found that p130Cas is expressed in ductal epithelial cells of the submandibular gland (SMG). We generated epithelial tissue-specific p130Cas-deficient (p130CasΔepi-) mice and aimed to investigate the physiological role of p130Cas in the postnatal development of salivary glands. Histological analysis showed immature development of granular convoluted tubules (GCT) of the SMG in male p130CasΔepi- mice. Immunofluorescence staining showed that nuclear-localized androgen receptors (AR) were specifically decreased in GCT cells in p130CasΔepi- mice. Furthermore, epidermal growth factor-positive secretory granules contained in GCT cells were significantly reduced in p130CasΔepi- mice with downregulated AR signaling. GCTs lacking p130Cas showed reduced numbers and size of secretory granules, disrupted subcellular localization of the cis-Golgi matrix protein GM130, and sparse endoplasmic reticulum membranes in GCT cells. These results suggest that p130Cas plays a crucial role in androgen-dependent GCT development accompanied with ER-Golgi network formation in SMG by regulating the AR signaling.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Aonan Li
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Dento-Craniofacial Development and Regeneration Research Center Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fei Huang
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa, 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
7
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Mauduit O, Aure MH, Delcroix V, Basova L, Srivastava A, Umazume T, Mays JW, Bellusci S, Tucker AS, Hajihosseini MK, Hoffman MP, Makarenkova HP. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep 2022; 39:110663. [PMID: 35417692 PMCID: PMC9113928 DOI: 10.1016/j.celrep.2022.110663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | | | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Dos Santos DR, Fiais GA, de Oliveira Passos A, Dos Santos LFG, Kayahara GM, Crivelini MM, Matsushita DH, Antoniali C, Nakamune ACDMS, Dornelles RCM, Chaves-Neto AH. Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats. J Steroid Biochem Mol Biol 2022; 218:106048. [PMID: 34973376 DOI: 10.1016/j.jsbmb.2021.106048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
The objective of this study was to investigate the effects of orchiectomy (ORX) and testosterone replacement therapy (TRT) on redox balance and function of salivary glands. Forty-five young adult male Wistar rats (3 months old) were either castrated bilaterally or underwent fictitious surgery (SHAM) and were subsequently distributed into 3 groups: SHAM, ORX, and TRT (castrated rats that received an intramuscular injection of testosterone cypionate 10 mg/kg/weekly). All treatments started 4 weeks after castration (4 months old) and lasted 4 weeks (5 months old). At the end of treatment, pilocarpine-induced salivary secretion was collected to analyze salivary flow rate and biochemistry composition, and the parotid (PG) and submandibular (SMG) glands were sampled for redox balance markers and histomorphometric analyses. ORX increased salivary flow rate, calcium, phosphate, and chloride, and decreased total protein and amylase, while not changing the salivary buffer capacity, pH, sodium, and potassium compared to SHAM. TRT restored all salivary parameters to SHAM values. ORX increased oxidative lipid and protein damage, total antioxidant capacity, and uric acid in both salivary glands compared to SHAM. Superoxide dismutase, catalase, and glutathione peroxidase activities were greater only in the SMG of the ORX group in relation to SHAM. ORX decreased duct and acini area, while increasing connective tissue in the PG. On the other hand, ORX reduced duct area and increased acini area in the SMG compared to SHAM. TRT restored the redox balance and histomorphometric parameters to close to SHAM values in both salivary glands. Orchiectomy-induced salivary gland dysfunction was characterized by an increase in the salivary flow rate and changes in the secretion of total protein, amylase, and electrolytes, which are key factors, considered important for maintaining oral health status. To sum up, orchiectomy impaired the redox balance of the salivary glands. Our results also showed that TRT reversed the oxidative damage, morphological alterations, and salivary gland dysfunction induced by orchiectomy. Therefore, these results suggest an important action of testosterone on the redox balance and secretory ability of salivary glands.
Collapse
Affiliation(s)
- Damáris Raissa Dos Santos
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Arthur de Oliveira Passos
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Luis Fernando Gadioli Dos Santos
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giseli Mitsuy Kayahara
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Marcelo Macedo Crivelini
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Doris Hissako Matsushita
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Ana Cláudia de Melo Stevanato Nakamune
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
10
|
Yamashiro T, Kurosaka H, Inubush T. The Association Between Runx Signaling and Craniofacial Development and Disease. Curr Osteoporos Rep 2022; 20:120-126. [PMID: 34931296 DOI: 10.1007/s11914-021-00692-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The Runx family genes (Runx1, Runx2, Runx3, and Cbfb) are important transcriptional regulators in the development of various tissues. We herein highlight the roles of the Runx family genes in morphogenesis in the craniofacial regions and in the pathogenesis of congenital morphological problems in these regions. RECENT FINDINGS A recent analysis using conditional Runx mutant animals and a human genetic study identified the novel roles of Runx genes in the development of the tooth, salivary glands, and the palate. In an animal study, Runx1/Cbfb signaling was found to regulate the Lgr5 expression and maintain the stem cells in the dental epithelium in the growing incisors. Aberrant Runx1/Cbfb signaling induced male-specific involution of the convoluted granular cell differentiation of the submandibular gland. In palatogenesis, Runx1/Cbfb signaling regulated the Tgfb3 expression in the fusing palatal epithelium through Stat3 activation. The combination of a human genetic study and a phenotype analysis of mutant animals revealed the various roles of Runx genes in the development of the tooth, palate, and salivary glands. Runx genes have functional redundancy in various tissues, which still hinder the roles of Runx genes in morphogenesis. Future studies may reveal the novel roles of Runx signaling.
Collapse
Affiliation(s)
- Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Inubush
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Minagi HO, Yamanaka Y, Nohara K, Ikai K, Sakai T. Analysis of medication-induced xerostomia in elderly Japanese patients. Clin Oral Investig 2021; 26:2021-2029. [PMID: 34581885 PMCID: PMC8816514 DOI: 10.1007/s00784-021-04182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
Objectives To determine the general condition of elderly xerostomia patients, we collected their background and medication data in order to potentially treat their xerostomia. It is critical to identify the drugs causing xerostomia in elderly patients. A total of 521 patients who were examined at the Xerostomia Clinic of Osaka University Dental Hospital were included in the study. We obtained patients’ data on age, sex, number of primary illnesses, Saxon test scores, oral moisture test, subjective symptoms, and drug types from their clinical records. Results The mean age of the patients was 65.2 ± 13.3 years. Although all patients exhibited xerostomia symptoms, there were a lot of patients without hyposalivation. With respect to medication, each elderly xerostomia patient took an average of 6.8 ± 4.4 medicines. A total of 26.1% of patients in their 70 s took more than ten number of drugs. In addition, the number of frequently used medication medicine was different between elderly and young patients. Most of the medicines had xerostomia as a side effect in medical package inserts. Moreover, the quantity of salivation significantly decreased in patients who took more than seven drugs in comparison with the patients who did not take medicine. Conclusions As patients age, the number of medications they take tends to increase, subsequently increasing their risk of xerostomia. For the health of the patients, it is critical that an accurate diagnosis is made. Clinical relevance To establish therapeutic strategies for treatment of xerostomia, this study provides new and important information that will help in the development of xerostomia medical treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04182-2.
Collapse
Affiliation(s)
- Hitomi Ono Minagi
- Department of Cytology and Histology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan.,Center for the Special Needs Dentistry, Okayama University Hospital, Okayama, Japan
| | - Yoshie Yamanaka
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kanji Nohara
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuki Ikai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
12
|
Gluck C, Min S, Oyelakin A, Che M, Horeth E, Song EAC, Bard J, Lamb N, Sinha S, Romano RA. A Global Vista of the Epigenomic State of the Mouse Submandibular Gland. J Dent Res 2021; 100:1492-1500. [PMID: 33978512 DOI: 10.1177/00220345211012000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The parotid, submandibular, and sublingual glands represent a trio of oral secretory glands whose primary function is to produce saliva, facilitate digestion of food, provide protection against microbes, and maintain oral health. While recent studies have begun to shed light on the global gene expression patterns and profiles of salivary glands, particularly those of mice, relatively little is known about the location and identity of transcriptional control elements. Here we have established the epigenomic landscape of the mouse submandibular salivary gland (SMG) by performing chromatin immunoprecipitation sequencing experiments for 4 key histone marks. Our analysis of the comprehensive SMG data sets and comparisons with those from other adult organs have identified critical enhancers and super-enhancers of the mouse SMG. By further integrating these findings with complementary RNA-sequencing based gene expression data, we have unearthed a number of molecular regulators such as members of the Fox family of transcription factors that are enriched and likely to be functionally relevant for SMG biology. Overall, our studies provide a powerful atlas of cis-regulatory elements that can be leveraged for better understanding the transcriptional control mechanisms of the mouse SMG, discovery of novel genetic switches, and modulating tissue-specific gene expression in a targeted fashion.
Collapse
Affiliation(s)
- C Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - S Min
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - A Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Che
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - E Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - E A C Song
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - J Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, USA
| | - N Lamb
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, USA
| | - S Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - R A Romano
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
13
|
Soares CD, de Cáceres CVBL, Rodrigues-Fernandes CI, de Lima Morais TM, de Almeida OP, de Carvalho MGF, Fonseca FP. Prognostic importance of RUNX1 expression for head and neck adenoid cystic carcinoma. Oral Dis 2020; 27:266-276. [PMID: 32609408 DOI: 10.1111/odi.13522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE In the present study, we aimed to investigate the prognostic value of RUNX1 expression in 76 patients with adenoid cystic carcinoma (ACC). MATERIALS AND METHODS All cases were arranged in tissue microarray blocks and submitted to immunohistochemistry against RUNX1. These results were statistically correlated with clinicopathologic features, including age, gender, tumour site, tumour size, lymph node status, AJCC clinical stage, distant metastasis, treatment, recurrences, follow-up, histologic pattern, vascular and neural invasion, all of which obtained from patient's medical records. RESULTS RUNX1 was expressed in the nuclei of tumour cells, with a mean of 18.1% of positivity. Nuclear RUNX1 expression was significantly associated with AJCC clinical stage (p < .0001), solid histologic pattern (p < .0001), vascular invasion (p < .0001) and presence of local recurrence (p < .0001). Using univariate and multivariate analyses, RUNX1 nuclear expression was significantly associated with a lower disease-free survival (p < .0001 and p = .028, respectively) and disease-specific survival (p < .0001 and p = .018, respectively) rates. CONCLUSION In summary, RUNX1 nuclear expression may represent an indicator of unfavourable outcome for patients affected by head and neck ACC.
Collapse
Affiliation(s)
- Ciro Dantas Soares
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil.,Private Pathology Service, Natal, Rio Grande do Norte, Brazil
| | | | | | - Thayná Melo de Lima Morais
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Oslei Paes de Almeida
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
15
|
Runx1-Stat3 signaling regulates the epithelial stem cells in continuously growing incisors. Sci Rep 2018; 8:10906. [PMID: 30026553 PMCID: PMC6053438 DOI: 10.1038/s41598-018-29317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/09/2018] [Indexed: 11/08/2022] Open
Abstract
Rodent incisors grow permanently and the homeostasis of enamel production is maintained by a continuous supply of epithelial progenitors from putative stem cells in the cervical loop. We herein report that Runx1 regulates the Lgr5-expressing epithelial stem cells and their subsequent continuous differentiation into ameloblasts. Mice deficient in epithelial Runx1 demonstrate remarkable shortening of the incisors with underdevelopment of the cervical loop and enamel defects. In this mutant cervical loop, the proliferation of the dental epithelium was significantly disturbed and the expression of Lgr5 and enamel matrix proteins was remarkably downregulated. Interestingly, the expression of Socs3, an inhibitor of Stat3 signaling, was upregulated and Stat3 phosphorylation was suppressed specifically in the mutant cervical loop. The expression of Lgr5 and the enamel matrix protein in the wild-type incisor germs is disturbed by pharmaceutical Stat3 inhibition in vitro., of. Conversely, pharmaceutical activation of Stat3 rescues the defective phenotypes of the Runx1 mutant with upregulated Lgr5 and enamel matrix protein genes. The present results provide the first evidence of the role of Runx1 regulates the Lgr5-expressing epithelial stem cells and differentiation of ameloblast progenitors in the developing incisors. Our study also demonstrates that Stat3 modulates the Runx1-Lgr5 axis in the cervical loop.
Collapse
|
16
|
Minagi HO, Ikai K, Araie T, Sakai M, Sakai T. Benefits of long-term pilocarpine due to increased muscarinic acetylcholine receptor 3 in salivary glands. Biochem Biophys Res Commun 2018; 503:1098-1102. [PMID: 29953856 DOI: 10.1016/j.bbrc.2018.06.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 01/10/2023]
Abstract
Hypofunction of the salivary gland causes several life-disrupting side effects such as dental caries, oral candidiasis, loss of taste, and swallowing disorders. No satisfactory therapy has been established to treat salivary hypofunction. Pilocarpine represents a potential treatment for dry mouth due to Sjögren's syndrome (SS). Although subjective improvement was consistently observed with pilocarpine therapy, the mechanism was unclear. In this study, we investigated the mechanism of recovery in salivation following treatment with pilocarpine. We first examined the effectiveness of pilocarpine in SS patients as quantified by the Saxon test and the visual analogue scale average. We found that salivation ability and subjective symptoms improved by continuous administration of pilocarpine. These results demonstrated that long-term medication for dry mouth patients was more effective. However, as the mechanism remained unclear, molecular biological mechanisms were analyzed based on the effects of continuous administration of pilocarpine using model mice. In the molecular biological analysis, continuous administration of pilocarpine was effective in both ICR and SS model mice. Gene and protein expression of muscarinic acetylcholine receptor 3 (M3R) increased in salivary glands following continuous administration of pilocarpine compared with single administration. Therefore, continuous administration of pilocarpine effectively induced M3R expression, thereby activating salivation.
Collapse
Affiliation(s)
- Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuki Ikai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takafumi Araie
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Manabu Sakai
- Division for Clinical Laboratory, Osaka University Dental Hospital, Osaka, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
17
|
Gao X, Oei MS, Ovitt CE, Sincan M, Melvin JE. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse. Physiol Genomics 2018; 50:263-271. [PMID: 29373073 DOI: 10.1152/physiolgenomics.00124.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.
Collapse
Affiliation(s)
- Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland , College Park, Maryland
| | - Maria S Oei
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| | - Catherine E Ovitt
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester , Rochester, New York
| | - Murat Sincan
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|