1
|
Huang X, Feng L, Lu X, Yang F, Liu S, Wei X, Huang J, Wang Y, Huang D, Huang T. Development and optimization of a self micro-emulsifying drug delivery system (SMEDDS) for co-administration of sorafenib and curcumin. Drug Deliv Transl Res 2025; 15:1609-1625. [PMID: 39207633 DOI: 10.1007/s13346-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
In this study, we developed a novel co-administration of curcumin and sorafenib using a Self micro-emulsifying Drug Delivery System (SMEDDS) called Sorafenib-Curcumin Self micro-emulsifying Drug Delivery System (SOR-CUR-SMEDDS). The formulation was optimized using star point design-response surface methodology, and in vitro cellular experiments were conducted to evaluate the delivery ratio and anti-tumor efficacy of the curcumin and sorafenib combination. The SOR-CUR-SMEDDS exhibited a small size distribution of 13.48 ± 0.61 nm, low polydispersity index (PDI) of 0.228 ± 0.05, and negative zeta potential (ZP) of - 12.4 mV. The half maximal inhibitory concentration (IC50) of the SOR-CUR-SMEDDS was 3-fold lower for curcumin and 5-fold lower for sorafenib against HepG2 cells (human hepatocellular carcinoma cells). Transmission electron microscopy (TEM) and particle size detection confirmed that the SOR-CUR-SMEDDS droplets were uniformly round and within the nano-emulsion particle size range of 10-20 nm. The SMEDDS were characterized then studied for drug release in vitro via dialysis membranes. Curcumin was released more completely in the combined delivery system, showing the largest in vitro drug release (79.20%) within 7 days in the medium, while the cumulative release rate of sorafenib in the release medium was low, reaching 58.96% on the 7 day. In vitro pharmacokinetic study, it demonstrated a significant increase in oral bioavailability of sorafenib (1239.88-fold) and curcumin (3.64-fold) when administered in the SMEDDS. These findings suggest that the SMEDDS formulation can greatly enhance drug solubility, improve drug absorption and prolong circulation in vivo, leading to increased oral bioavailability of sorafenib and curcumin.
Collapse
Affiliation(s)
- Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, Guangxi, 530000, PR China.
| | - Lizhen Feng
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xuefang Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Fan Yang
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Shengjun Liu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xueqian Wei
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Jinping Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Yao Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Dongyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Tingting Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| |
Collapse
|
2
|
Dias IRSB, Costa RGA, Rodrigues ACBDC, Silva SLR, Oliveira MDS, Soares MBP, Dias RB, Valverde LF, Gurgel Rocha CA, Cairns LV, Mills KI, Bezerra DP. Bithionol eliminates acute myeloid leukaemia stem-like cells by suppressing NF-κB signalling and inducing oxidative stress, leading to apoptosis and ferroptosis. Cell Death Discov 2024; 10:390. [PMID: 39209810 PMCID: PMC11362533 DOI: 10.1038/s41420-024-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a lethal bone marrow neoplasm caused by genetic alterations in blood cell progenitors. Leukaemic stem cells (LSCs) are responsible for the development of AML, drug resistance and relapse. Bithionol is an old anthelmintic drug with potential antibacterial, antiviral, antifungal, anti-Alzheimer, and antitumour properties. In this work, we focused on the anti-AML LSC properties of bithionol. This compound inhibited the viability of both solid and haematological cancer cells, suppressed AML stem-like cells, and inhibited AML growth in NSG mice at a dosage of 50 mg/kg, with tolerable systemic toxicity. Bithionol significantly reduced the levels of phospho-NF-κB p65 (Ser529) and phospho-NF-κB p65 (Ser536) and nuclear NF-κB p65 translocation in AML cells, indicating that this molecule can suppress NF-κB signalling. DNA fragmentation, nuclear condensation, cell shrinkage, phosphatidylserine externalisation, loss of transmembrane mitochondrial potential, caspase-3 activation and PARP-(Asp 214) cleavage were detected in bithionol-treated AML cells, indicating the induction of apoptosis. Furthermore, this compound increased mitochondrial superoxide levels, and bithionol-induced cell death was partially prevented by cotreatment with the selective ferroptosis inhibitor ferrostatin-1, indicating the induction of ferroptosis. In addition, bithionol synergised with venetoclax in AML cells, indicating the translational potential of bithionol to enhance the effects of venetoclax in patients with AML. Taken together, these data indicate that bithionol is a potential new anti-AML drug.
Collapse
Affiliation(s)
- Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Propaedeutics, Faculty of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
- Department of Propaedeutics, Faculty of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Bahia, Brazil
| | - Lauren V Cairns
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Wei H, Zhao T, Liu X, Ding Q, Yang J, Bi X, Cheng Z, Ding C, Liu W. Mechanism of Action of Dihydroquercetin in the Prevention and Therapy of Experimental Liver Injury. Molecules 2024; 29:3537. [PMID: 39124941 PMCID: PMC11314611 DOI: 10.3390/molecules29153537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Liver disease is a global health problem that affects the well-being of tens of thousands of people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore, DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential therapeutic drugs for human liver diseases in conjunction with DHQ.
Collapse
Affiliation(s)
- Hewei Wei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Ting Zhao
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Xinglong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Junran Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Xiaoyu Bi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Zhiqiang Cheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| |
Collapse
|
4
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Luo Y, Wen Z, Xiong Y, Chen X, Shen Z, Li P, Peng Y, Deng Q, Yu Z, Zheng J, Han S. The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00618-x. [PMID: 37185582 DOI: 10.1038/s41429-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.
Collapse
Affiliation(s)
- Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zonglin Shen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Cellulose-Chitosan-Nanohydroxyapatite Hybrid Composites by One-Pot Synthesis for Biomedical Applications. Polymers (Basel) 2021; 13:polym13101655. [PMID: 34069677 PMCID: PMC8161035 DOI: 10.3390/polym13101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
The development of organic–inorganic hybrid materials deserves special interest for bone tissue engineering applications, where materials must have properties that induce the survival and activation of cells derived from the mesenchyme. In this work, four bio-nanocomposites based on cellulose and variable content of chitosan, from 15 to 50 w% based on cellulose, with nanohydroxyapatite and β-Glycerophosphate as cross-linking agent were synthesized by simplified and low-energy-demanding solvent exchange method to determine the best ratio of chitosan to cellulose matrix. This study analyzes the metabolic activity and survival of human dermal fibroblast cells cultivated in four bio-nanocomposites based on cellulose and the variable content of chitosan. The biocompatibility was tested by the in vitro cytotoxicity assays Live/Dead and PrestoBlue. In addition, the composites were characterized by FTIR, XRD and SEM. The results have shown that the vibration bands of β-Glycerophosphate have prevailed over the other components bands, while new diffraction planes have emerged from the interaction between the cross-linking agent and the biopolymers. The bio-nanocomposite micrographs have shown no surface porosity as purposely designed. On the other hand, cell death and detachment were observed when the composites of 1 and 0.1 w/v% were used. However, the composite containing 10 w% chitosan, against the sum of cellulose and β-Glycerophosphate, has shown less cell death and detachment when used at 0.01 w/v%, making it suitable for more in vitro studies in bone tissue engineering, as a promising economical biomaterial.
Collapse
|
7
|
Subramaniam Y, Subban K, Chelliah J. A novel synergistic anticancer effect of fungal cholestanol glucoside and paclitaxel: Apoptosis induced by an intrinsic pathway through ROS generation in cervical cancer cell line (HeLa). Toxicol In Vitro 2021; 72:105079. [PMID: 33422634 DOI: 10.1016/j.tiv.2021.105079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In the search for efficient therapeutics with economically viable for cancer treatment, combination therapy has developed as a keystone in the pursuit of novel approaches for drug discovery. In this regard, we confirmed the presence of cholestanol glucoside (CG) in Lasiodiplodia theobromae culture filtrate and its production was estimated to be 20.01 mg/l. The purified fungal CG was obtained with a molecular mass of 550.18 m/z. The combination of CG and paclitaxel (PTX) was found to have potent cytotoxicity against HeLa cells. We revealed that the synergistic effect of CG and PTX induced apoptosis through the formation of nuclear fragments, DNA fragmentation and sub G1 cell cycle arrest. Further, it was proven that apoptosis took place by loss of the mitochondrial membrane potential (MMP) through reactive oxygen species (ROS) production and caspase 3/7 activity. Moreover, the data suggests that the synergistic effect of CG and PTX played a role in a mitochondrial intrinsic pathway through the apoptotic gene expression of Bax, caspase-9 and caspase-3. In addition, the down-regulation of Bcl-2 strongly described the induced apoptosis through an intrinsic pathway using the Western blot analysis. The conclusion of this study is that a combination of CG and PTX has synergistic apoptotic effects in HeLa cells, which provides a possible therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
| | - Kamalraj Subban
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
8
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|
9
|
Kim JH, Chan KL, Cheng LW, Tell LA, Byrne BA, Clothier K, Land KM. High Efficiency Drug Repurposing Design for New Antifungal Agents. Methods Protoc 2019; 2:mps2020031. [PMID: 31164611 PMCID: PMC6632159 DOI: 10.3390/mps2020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023] Open
Abstract
Current antifungal interventions have often limited efficiency in treating fungal pathogens, particularly those resistant to commercial drugs or fungicides. Antifungal drug repurposing is an alternative intervention strategy, whereby new utility of various marketed, non-antifungal drugs could be repositioned as novel antifungal agents. In this study, we investigated “chemosensitization” as a method to improve the efficiency of antifungal drug repurposing, wherein combined application of a second compound (viz., chemosensitizer) with a conventional, non-antifungal drug could greatly enhance the antifungal activity of the co-applied drug. Redox-active natural compounds or structural derivatives, such as thymol (2-isopropyl-5-methylphenol), 4-isopropyl-3-methylphenol, or 3,5-dimethoxybenzaldehyde, could serve as potent chemosensitizers to enhance antifungal activity of the repurposed drug bithionol. Of note, inclusion of fungal mutants, such as antioxidant mutants, could also facilitate drug repurposing efficiency, which is reflected in the enhancement of antifungal efficacy of bithionol. Bithionol overcame antifungal (viz., fludioxonil) tolerance of the antioxidant mutants of the human/animal pathogen Aspergillus fumigatus. Altogether, our strategy can lead to the development of a high efficiency drug repurposing design, which enhances the susceptibility of pathogens to drugs, reduces time and costs for new antifungal development, and abates drug or fungicide resistance.
Collapse
Affiliation(s)
- Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.
| | - Kathleen L Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Barbara A Byrne
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Kristin Clothier
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
- California Animal Health and Food Safety Laboratory, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| |
Collapse
|
10
|
Zheng L, Li L, Lu Y, Jiang F, Yang XA. SREBP2 contributes to cisplatin resistance in ovarian cancer cells. Exp Biol Med (Maywood) 2018; 243:655-662. [PMID: 29466876 DOI: 10.1177/1535370218760283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study is to investigate transcription factors involved in cisplatin resistance in ovarian cancer cells. The transcriptome of cisplatin resistant and sensitive A2780 epithelial ovarian cancer cells was obtained from GSE15372. Ovarian transcriptome data GSE62944 was downloaded from TCGA and applied for transcription regulatory network analysis. The analysis results were confirmed using quantitative polymerase chain reaction. The roles of SREBP2 in cisplatin-resistant cells were investigated by RNA inference and cell viability analysis. Transcription regulatory network analysis found that 12 transcription factors and their targets were involved in cisplatin resistant in A2780 cells. Among these factors, the targets of EZH2 and SREBP2 revealed by Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining were also enriched in differentially expressed genes between cisplatin resistant and cisplatin sensitive cells. Their targets were enriched mainly in cell cycle and cholesterol metabolic process, respectively. Bioinformatic analysis illustrated three known targets of SREBP2, namely LDLR, FDFT1, and HMGCR were increased in A2780-resistant cell lines. Additionally, the three genes and SREBP2 were also elevated in live cells after cisplatin treatment via quantitative polymerase chain reaction. Importantly, RNA inference of SREBP2 in A2780 cell line resulted in a decrease of cell viability after cisplatin treatment. SREBP2 played important roles in cisplatin resistance and cholesterol metabolic process might be a novel target for cancer therapy. Impact statement Transcriptome of cisplatin resistant and sensitive A2780 epithelial ovarian cancer cells was obtained from GSE15372 and TCGA. Twelve transcription factors and their targets were involved in cisplatin resistant. Among these factors, the targets of EZH2 and SREBP2 revealed by Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining were also enriched in differentially expressed genes. Their targets were enriched mainly in cell cycle and cholesterol metabolic process. Three targets of SREBP2, namely LDLR, FDFT1, and HMGCR were increased in A2780-resistant cell lines and were found elevated in live cells after cisplatin treatment via qPCR. RNAi of SREBP2 in A2780 cell line resulted in a decrease of cell viability after cisplatin treatment. SREBP2 played important roles in cisplatin resistance and might be a novel target for cancer therapy.
Collapse
Affiliation(s)
- Lei Zheng
- 1 Beijing Scientific Operation Co., Ltd, Beijing 100121, P.R. China.,*These authors contributed equally to this work
| | - Li Li
- 2 Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China.,*These authors contributed equally to this work
| | - Yun Lu
- 3 Department of Nephrology, Affiliated Hospital of Hebei University of Engineering, Handan 056002, P.R. China
| | - Fangfang Jiang
- 4 Department of Obstetrics and Gynecology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Xiu-An Yang
- 1 Beijing Scientific Operation Co., Ltd, Beijing 100121, P.R. China
| |
Collapse
|
11
|
Yang Q, Zhang D, Li Y, Li Y, Li Y. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway. Biomed Pharmacother 2017; 97:1424-1433. [PMID: 29156532 DOI: 10.1016/j.biopha.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive inflammatory response and apoptosis play an important role in the sepsis-induced liver injury. Paclitaxel, a diterpene alkaloid of Taxus brevifolia, is widely used as an anti-tumor drug and shows protective effects on acute lung and kidney injury. However, whether it has a protective effect against sepsis-induced liver injury has not been reported. The objective of this study was to investigate the protective effects of paclitaxel in septic liver injury in mice and associated molecular mechanisms. Our results showed that paclitaxel treatment improved LPS-induced liver injury, as evidenced by the reduced aminotransferase activity, histological scores and apoptosis in the liver tissues. This was accompanied by the alleviating of inflammation and oxidative stress, such as decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-6) interleukin-1β (IL-1β) and malondialdehyde (MDA) and increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in serum and liver tissues. Subsequent microarray and qRT-PCR analysis further showed that miR-27a was significantly decreased in mice with sepsis, which was recovered by paclitaxel pretreatment. Antagomir-miR-27a suppressed the therapeutic effects of paclitaxel in mice liver injury model via promoting inflammatory response. Of note, TAB3, which participated in the activation of the NF-κB signaling pathway, was identified as a direct target of miR-27 by luciferase reporter gene assays. Then, we revealed a reverse relationship between miR-27a expression levels and TAB3 mRNA levels in liver tissues from septic mice. Furthermore, paclitaxel treatment significantly decreased the expression of NF-κB p65, but increased inhibitor of nuclear factor-κB-α (IκBα) protein levels in septic mice, suggesting the inactivation of NF-κB signaling pathway. Notably, the inhibitory effects of paclitaxel on NF-κB signaling pathway were reversed by antagomir-miR-27a. Our data indicated that paclitaxel significantly attenuated septic induced liver injury through reducing inflammatory response via miR-27a/TAB3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Dongshan Zhang
- Departments of Emergency Medicine and Nephrology, Second Xiangya Hospital, Central South University, China
| | - Ya Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yongquan Li
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China
| | - Yinpeng Li
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, China.
| |
Collapse
|