1
|
Li Z, Cao Z, Ma X, Cao D, Zhao K, Zhao K, Ma Q, Gong F, Li Z, Qiu D, Zhang X, Liu H, Ren R, Yin D. Natural resistance-associated macrophage proteins are involved in tolerance to heavy metal Cd 2+ toxicity and resistance to bacterial wilt of peanut (Arachis hypogaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108411. [PMID: 38309181 DOI: 10.1016/j.plaphy.2024.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil and industrial crops. However, heavy-metal pollution and frequent soil diseases, poses a significant threat to the production of green and healthy peanuts. Herein, we investigated the effects of heavy metal Cd2+ toxicity to the peanuts, and screened out two peanut cultivars H108 and YZ 9102 with higher Cd2+-tolerance. RNA-seq revealed that Natural resistance-associated macrophage proteins (NRAMP)-like genes were involved in the Cd2+ stress tolerance in H108. Genome-wide identification revealed that 28, 13 and 9 Nramp-like genes existing in the A. hypogaea, A. duranensis and A. ipaensis, respectively. The 50 peanut NRAMP genes share conserved architectural characters, and they were classified into two groups. Expressions of AhNramps, particularly AhNramp4, AhNramp12, AhNramp19, and AhNramp25 could be greatly induced by not only cadmium toxicity, but also copper and zinc stresses. The expression profiles of AhNramp14, AhNramp16 and AhNramp25 showed significant differences in the H108 (resistance) and H107 (susceptible) under the infection of bacterial wilt. In addition, we found that the expression profiles of AhNramp14, AhNramp16, and AhNramp25 were greatly up- or down-regulated by the application of exogenous salicylic acid, methyl jasmonate, and abscisic acid. The AhNramp25, of which expression was affected by both heavy metal toxicity and bacterial wilt infection, were selected as strong candidate genes for peanut stress breeding. Our findings will provide an additional information required for further analysis of AhNramps involved in tolerance to heavy metal toxicity and resistance to bacterial wilt of peanut.
Collapse
Affiliation(s)
- Zhan Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zenghui Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xingli Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Di Cao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kunkun Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Kai Zhao
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Qian Ma
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Fangping Gong
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhongfeng Li
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Ding Qiu
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xingguo Zhang
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Rui Ren
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Dongmei Yin
- College of Agronomy & Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Ji X, Han Y, Wu Y, Liang B, Zheng J, Ma S, Li C, Xu H, Guo S. Synthesis of nano-Fe 3O 4/ZnO composites with enhanced antibacterial properties and plant growth promotion via one-pot reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87016-87027. [PMID: 37420151 DOI: 10.1007/s11356-023-28534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Bordeaux mixture is commonly used in agricultural production due to its certain antibacterial activity. However, it has been observed to promote plant growth at a slow pace. Therefore, it is crucial to explore an effective antibacterial agent that can enhance the antibacterial activity and promote plant growth in commercially available Bordeaux mixture, which can significantly contribute to the development of the agricultural economy. The investigation into inorganic agents with both bacteriostatic and plant-promoting properties has a broad application potential in agriculture. Fe3O4/ZnO (FZ) composites were synthesized from FeCl3, ZnCl2, and NaAc in a "one-pot approach" and analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a vibrating sample magnetometer (VSM). To investigate the antibacterial activity and mechanism of FZ nanocomposites, Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were used as model bacteria, and human mammary epithelial cells and model plant mung bean were used as targets to study the effects of FZ on human and plant growth. The results revealed that at 300 µg/mL for 80 min, the antibacterial efficacy of FZ composites was 99.8% against E. coli, which was 20% greater than that of Bordeaux liquid (FC), and 99.9% against S. aureus, which was 28.6% higher than that of FC. The inhibitory mechanism demonstrated that the substance could efficiently damage the bacterial cell wall of a concentration of 300 µg/mL. The IC50 of the material to human mammary epithelial cells was 49.518 µg/mL, and it also increased mung bean germination, root growth, and chlorophyll content, indicating that the application performance was 1.5 times better than that of FC. Its exceptional performance can be used to treat agricultural diseases.
Collapse
Affiliation(s)
- Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Yuanyuan Han
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Yinghua Wu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Ben Liang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Jinli Zheng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Shuting Ma
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Chen Li
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Haitao Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China
| | - Shaobo Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China.
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, People's Republic of China.
| |
Collapse
|
3
|
Zhang H, Xie S, Bao Z, Carranza EJM, Tian H, Wei C. Synergistic inhibitory effect of selenium, iron, and humic acid on cadmium uptake in rice (Oryza sativa L.) seedlings in hydroponic culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64652-64665. [PMID: 34318411 DOI: 10.1007/s11356-021-15527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), iron (Fe), and humic acid (HA) are beneficial fertilizers that inhibit cadmium (Cd) uptake in crops and are crucial for agricultural yields as well as human health. However, the joined effect of Se, Fe, and HA on Cd uptake in rice are still poorly understood. Therefore, a hydroponic culture experiment was established to evaluate the combined effect of Se (Se4+ or Se6+), Fe, and HA on the biomass, Cd uptake, and Cd translocation of/in rice seedlings. Compared to Se6+ application, Se4+ application in most treatments resulted in lower Cd translocations from roots to shoots, leading to a significant decrease in shoot Cd concentrations. Compared to the treatments with Se4+ or Fe2+ application, joined application of Se4+ and Fe2+ inhibited Cd uptake in shoots by decreasing Cd adsorption onto (iron plaque) and uptake by roots, and alleviating Cd translocation from root to shoot. Compared to the treatments with Se6+ or Fe2+ application, joined application of Se6+ and Fe2+ inhibited Cd uptake in shoots by sequestering (retaining) Cd onto root surface (iron plaque). HA inhibited Cd uptake in all treatments by decreasing the bioavailability of Cd in the nutrient solution through complexation. The simultaneous application of Se, Fe, and HA decreased the shoot Cd concentrations the most, followed by the combined application of two fertilizers and their individual application; the mean shoot Cd concentration in the Fe-SeIV-HA2 treatment was the lowest among all the treatments, at only 11.39 % of those in the control treatments. The 3-way ANOVA results indicated that the Cd concentrations in shoots were significantly affected by Se, Fe, HA, and certain of their interactions (Fe×Se and Se×HA) (p< 0.05). The above findings suggest that the joined application of Se, Fe, and HA ameliorated Cd uptake mainly by inhibiting Cd adsorption onto (iron plaque) and uptake by roots and the translocation from roots to shoots (Fe×Se4+), retaining (sequestering) Cd in iron plaque (Fe×Se6+), and decreasing Cd availability in nutrient solution (HA).
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Zhengyu Bao
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Emmanuel John M Carranza
- Geological Sciences, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville, 3629, South Africa
| | - Huan Tian
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Changhua Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Huang WX, Zhang DM, Cao YQ, Dang BJ, Jia W, Xu ZC, Han D. Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111412. [PMID: 33039872 DOI: 10.1016/j.ecoenv.2020.111412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 μM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.
Collapse
Affiliation(s)
- Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Duo-Min Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu-Qiao Cao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Bing-Jun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Zi-Cheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
| |
Collapse
|
5
|
Chen C, Cao Q, Jiang Q, Li J, Yu R, Shi G. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC PLANT BIOLOGY 2019; 19:35. [PMID: 30665365 PMCID: PMC6341601 DOI: 10.1186/s12870-019-1654-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Iron (Fe) is an essential element for plant growth and development, whereas cadmium (Cd) is non-essential and highly toxic. Previous studies showed that Fe deficiency enhanced Cd uptake and accumulation in peanuts. However, the molecular mechanism underlying the increased Cd accumulation in Fe-deficient peanut plants is poorly understood. RESULTS We employed a comparative transcriptome analysis approach to identify differentially expressed genes (DEGs) in peanut roots exposed to Fe-sufficient without Cd, Fe-deficient without Cd, Fe-sufficient with Cd and Fe-deficient with Cd. Compared with the control, Fe deficiency induced 465 up-regulated and 211 down-regulated DEGs, whereas the up- and down-regulated DEGs in Cd exposed plants were 329 and 189, respectively. Under Fe-deficient conditions, Cd exposure resulted in 907 up-regulated DEGs and 953 down-regulated DEGs. In the presence of Cd, Fe deficiency induced 1042 up-regulated and 847 down-regulated genes, respectively. Based on our array data, we found that metal transporter genes such as CAX4, COPT1, IRT1, NRAMP5, OPT3, YSL3, VIT3 and VIT4 might be involved in iron homeostasis. Moreover, combined with quantitative real-time PCR, IRT1, NRAMP3, NRAMP5, OPT3, YSL3, ABCC3, ZIP1, and ZIP5 were verified to be responsible for Cd uptake and translocation in peanut plants under iron deficiency. Additionally, a larger amount of ABC transporter genes was induced or suppressed by iron deficiency under Cd exposure, indicating that this family may play important roles in Fe/Cd uptake and transport. CONCLUSIONS The up-regulated expression of NRAMP5 and IRT1 genes induced by iron deficiency may enhance Cd uptake in peanut roots. The decrease of Cd translocation from roots to shoots may be resulted from the down-regulation of ZIP1, ZIP5 and YSL3 under iron deficiency.
Collapse
Affiliation(s)
- Chu Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qiqi Cao
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qun Jiang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Jin Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| |
Collapse
|
6
|
Bahmani R, Kim D, Na J, Hwang S. Expression of the Tobacco Non-symbiotic Class 1 Hemoglobin Gene Hb1 Reduces Cadmium Levels by Modulating Cd Transporter Expression Through Decreasing Nitric Oxide and ROS Level in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:201. [PMID: 30853969 PMCID: PMC6396062 DOI: 10.3389/fpls.2019.00201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/06/2019] [Indexed: 05/03/2023]
Abstract
Hemoglobin (Hb) proteins are ubiquitous in plants, and non-symbiotic class 1 hemoglobin (Hb1) is involved in various biotic and abiotic stress responses. Here, the expression of the tobacco (Nicotiana tabacum) hemoglobin gene NtHb1 in Arabidopsis (Arabidopsis thaliana) showed higher cadmium (Cd) tolerance and lower accumulations of Cd, nitric oxide (NO), and reactive oxygen species (ROS) like hydrogen peroxide (H2O2). NtHb1-expressing Arabidopsis exhibited a reduced induction of NO levels in response to Cd, suggesting scavenging of NO by Hb1. In addition, transgenic plants had reduced accumulation of ROS and increased activities of antioxidative enzymes (catalase, superoxide dismutase, and glutathione reductase) in response to Cd. While the expression of the Cd exporters ABC transporter (PDR8) and Ca2+/H+ exchangers (CAXs) was increased, that of the Cd importers iron responsive transporter 1 (IRT1) and P-type 2B Ca2+ ATPase (ACA10) was reduced in response to Cd. When Col-0 plants were treated with the NO donor sodium nitroprusside (SNP) and H2O2, the expression pattern of Cd transporters (PDR8, CAX3, IRT1, and ACA10) was reversed, suggesting that NtHb1 expression decreased the Cd level by regulating the expression of Cd transporters via decreased NO and ROS. Correspondingly, NtHb1-expressing Arabidopsis showed increased Cd export. In summary, the expression of NtHb1 reduces Cd levels by regulating Cd transporter expression via decreased NO and ROS levels in Arabidopsis.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - JongDuk Na
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, South Korea
- *Correspondence: Seongbin Hwang,
| |
Collapse
|
7
|
Wang N, Qiu W, Dai J, Guo X, Lu Q, Wang T, Li S, Liu T, Zuo Y. AhNRAMP1 Enhances Manganese and Zinc Uptake in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:415. [PMID: 31134101 PMCID: PMC6514220 DOI: 10.3389/fpls.2019.00415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 05/17/2023]
Abstract
Manganese (Mn) and zinc (Zn) play essential roles in plants. Members of the natural resistance-associated macrophage protein (NRAMP) family transport divalent metal ions. In this research, the function of peanut (Arachis hypogaea L.) AhNRAMP1 in transporting Mn and Zn, as well as its potential for iron(Fe) and Zn biofortification was examined. AhNRAMP1 transcription was strongly induced by Mn- or Zn-deficiency in roots and stems of peanut. Yeast complementation assays suggested that AhNRAMP1 encoded a functional Mn and Zn transporter. Exogenous expression of AhNRAMP1 in tobacco and rice enhanced Mn or Zn concentrations, improving tolerance to Mn or Zn deficiency. With higher Mn concentration, transgenic plants exhibited inhibited growth under Mn excess condition; similar results were obtained under excessive Zn treatment. AhNRAMP1 expression increased biomass in transgenic tobacco and rice, as well as yield in transgenic rice grown on calcareous soil. Compared with non-transformed (NT) plants, Fe and Zn concentrations were elevated whereas concentrations of Mn, copper (Cu), and cadmium (Cd) were not enhanced. These results revealed that AhNRAMP1 contributes to Mn and Zn transport in plants and may be a candidate gene for Fe and Zn biofortification.
Collapse
Affiliation(s)
- Nanqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Qiu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jing Dai
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaotong Guo
- College of Agriculture, Ludong University, Yantai, China
| | - Qiaofang Lu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Tianqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Shiqin Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Tongtong Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- *Correspondence: Yuanmei Zuo,
| |
Collapse
|